Crafting Better Contrastive Views for Siamese Representation Learning
This is the official PyTorch implementation of the ContrastiveCrop paper:
@article{peng2022crafting,
title={Crafting Better Contrastive Views for Siamese Representation Learning},
author={Peng, Xiangyu and Wang, Kai and Zhu, Zheng and You, Yang},
journal={arXiv preprint arXiv:2202.03278},
year={2022}
}
This repo includes PyTorch implementation of SimCLR, MoCo, BYOL and SimSiam, as well as their DDP training code.
Preparation
- Create a python enviroment with
pytorch >= 1.8.1
. pip install -r requirements.txt
- Modify dataset
root
in the config file.
Pre-train
# MoCo, CIFAR-10
python DDP_moco_ccrop.py configs/small/cifar10/moco_alpha0.1_th0.1.py
# SimSiam, CIFAR-100
python DDP_simsiam_ccrop.py configs/small/cifar100/simsiam_alpha0.1_th0.1.py
Linear Evaluation
# CIFAR-10
python DDP_linear.py configs/linear/cifar10_res18.py --load ./checkpoints/small/cifar10/moco_alpha0.1_th0.1/last.pth
# CIFAR-100
python DDP_linear.py configs/linear/cifar100_res18.py --load ./checkpoints/small/cifar100/simsiam_alpha0.1_th0.1/last.pth
More models and datasets coming soon.