Object detection GUI based on PaddleDetection

Overview

PP-Tracking GUI界面测试版

本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面

在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。

image-20211122180124835

GUI界面基于PyQT和PP-Tracking python部署代码开发;当前覆盖单镜头的全部功能,如行人跟踪,车辆跟踪,流量统计等

推荐使用Windows环境

主要包含两个步骤:

  • 导入训练模型,修改模型名称
  • 安装必要的依赖库
  • 启动前端界面

1. 下载预测模型

PP-Tracking 提供了覆盖多种场景的预测模型,用户可以根据自己的实际使用场景在链接中直接下载表格最后一列的预测部署模型

如果您想自己训练得到更符合您场景需求的模型,可以参考快速开始文档训练并导出预测模型

模型导出放在./output_inference目录下

2. 必要的依赖库安装

pyqt5
moviepy
opencv-python
PySide2
matplotlib
scipy
cython_bbox
paddlepaddle

注:

  1. Windows环境下,需要手动下载安装cython_bbox,然后将setup.py中的找到steup.py, 修改extra_compile_args=[’-Wno-cpp’],替换为extra_compile_args = {'gcc': ['/Qstd=c99']}, 然后运行python setup.py build_ext install
  2. numpy版本需要大于1.20

3. 启动前端界面

执行python main.py启动前端界面

参数说明如下:

参数 是否必须 含义
模型运行 Option 点击后进行模型训练
结果显示 Option 在运行状态为检测完成的时候进行结果视频显示
停止运行 Option 停止整个视频输出
取消轨迹 Option 在一开始时取消轨迹
阈值调试 Option 预测得分的阈值,默认为0.5
输入FPS Option 输入视频的FPS
检测用时 Option 视频的检测时间
人流量检测 Option 每隔一段帧数内的人流量统计图表
时间长度 Option 人流量时间统计长度
开启出入口 Option 导入视频后可自行选择是否开启出入口训练
导出文件 Option 可视化结果保存的根目录,默认为output/

说明:

  • 如果安装的PaddlePaddle不支持基于TensorRT进行预测,需要自行编译,详细可参考预测库编译教程
  • 建议使用windows环境进行运行
You might also like...
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously. Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

MMDetection3D is an open source object detection toolbox based on PyTorch
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

OBBDetection is a oriented object detection library, which is based on MMdetection.
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.
Comments
  • simplify file_name & file_path

    simplify file_name & file_path

    major revise:

    1. file_path means the abs path of input video, for example: /User/xxx/test.mp4
    2. file_name is the name of input video file, for example: test
    3. move the VideoCapture from open_video to video_start
    4. remove --save_images and synthesis_vide in load_model. The output video will be saved in output/test.mp4 after model prediction
    5. move the downloaded models to ./output_inference
    opened by jerrywgz 0
  • 在使用gui检测小目标的车辆检测时,报错mot_jde_infer.py: error: unrecognized arguments: .mp4,

    在使用gui检测小目标的车辆检测时,报错mot_jde_infer.py: error: unrecognized arguments: .mp4,

    在使用gui进行车辆跟踪的小目标跟踪时,报错mot_jde_infer.py: error: unrecognized arguments: .mp4, 预测部署文件使用的是:fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle 视频文件是:https://bj.bcebos.com/v1/paddledet/data/mot/demo/visdrone_demo.mp4

    opened by beixinag 0
  • 请问在linux ubuntu系统运行GUI能够正常使用吗,为什么我无法显示gui界面呢?

    请问在linux ubuntu系统运行GUI能够正常使用吗,为什么我无法显示gui界面呢?

    运行日志:QFactoryLoader::QFactoryLoader() checking directory path "/usr/libexec/iconengines" ... Unknown property box-shadow Unknown property box-shadow

    Unknown property box-shadow Unknown property box-shadow QFactoryLoader::QFactoryLoader() checking directory path "/gpfs1/home/kaizhuang7/.local/lib/python3.6/site-packages/PySide2/Qt/plugins/accessible" ... QFactoryLoader::QFactoryLoader() checking directory path "/usr/libexec/accessible" ... image

    opened by kkhuangzekai 10
  • 这个项目的历史特别大, 或许需要清除部分历史?

    这个项目的历史特别大, 或许需要清除部分历史?

    如题, 整个项目现在合计有 2G 那么大了, 但是实际上有用的部分代码占 10M, 两个视频 30M, 剩下的都是 git 历史. 我看了看或许需要清理掉的历史有:

    • 0526e81 一大堆已经删除的图片
    • 2392ecb 一大堆已经删除的图片
    • 5184309 一大堆已经删除的图片
    • 一大堆已经删除的推理模型
    • 一些奇怪的合并. 这个可以在合并的时候用 rebase 模式来避免.

    我试着删了删没用的历史, 留下的 .git 还有 88M, 如果你觉得可以, 我就开一个 PR 出来.

    opened by myuanz 1
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

null 3 Jan 26, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

null 7 Jan 8, 2023
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 5, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Su Pang 254 Dec 16, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 4, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

null 44 Dec 9, 2022