Unsupervised Learning of Compositional Energy Concepts
This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.
Demo
Please download a pretrained model at this link and then execute the following code to test a pretrained CelebA-HQ 128x128 COMET model
python demo.py im_path=im0.png
Global Factor Decomposition
Please utilize the following command to run global factor decomposition on CelebA-HQ (or other datasets)
python train.py --exp=celebahq --batch_size=12 --gpus=1 --cuda --train --dataset=celebahq --step_lr=500.0
You may further run the code on high-resolution 128x128 images below
python train.py --exp=celebahq_128 --batch_size=12 --gpus=1 --cuda --train --dataset=celebahq_128 --step_lr=500.0
Local Factor Decomposition
Please utilize the following command to run local factor decomposition on CLEVR
python train.py --exp=clevr_local_decomp --num_steps=5 --step_lr=1000.0 --components=4 --dataset=clevr --cuda --train --batch_size=24 --latent_dim=16 --recurrent_model --pos_embed
Dataset Download
Please utilize the following link to download the CLEVR dataset utilized in our experiments. Downloads for additional datasets will be posted soon. Feel free to raise an issue if there is a particular dataset you would like downloaded
Citing our Paper
If you find our code useful for your research, please consider citing
@inproceedings{du2021comet,
title={Unsupervised Learning of Compositional Energy Concepts},
author={Du, Yilun and Li, Shuang and Sharma, Yash and Tenenbaum, B. Joshua
and Mordatch, Igor},
booktitle={Advances in Neural Information Processing Systems},
year={2021}
}