Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

Overview

Python 3.6

GUI for iVOS(interactive VOS) and GIS (Guided iVOS)

explain_qwerty GUI Implementation of

CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps"

ECCV2020 paper "Interactive Video Object Segmentation Using Global and Local Transfer Modules"

Githubs:
CVPR2021 / ECCV2020

Project Pages:
CVPR2021 / ECCV2020

Codes in this github:

  1. Real-world GUI evaluation on DAVIS2017 based on the DAVIS framework
  2. GUI for other videos

Prerequisite

  • cuda 11.0
  • python 3.6
  • pytorch 1.6.0
  • davisinteractive 1.0.4
  • numpy, cv2, PtQt5, and other general libraries of python3

Directory Structure

  • root/apps: QWidget apps.

  • root/checkpoints: save our checkpoints (pth extensions) here.

  • root/dataset_torch: pytorch datasets.

  • root/libs: library of utility files.

  • root/model_CVPR2021 : networks and GUI models for CVPR2021

  • root/model_ECCV2020 : networks and GUI models for ECCV2020

    • detailed explanations (including building correlation package) on [Github:ECCV2020]
  • root/eval_GIS_RS1.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_GIS_RS4.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/eval_IVOS.py : DAVIS2017 evaluation based on the DAVIS framework.

  • root/IVOS_demo_customvideo.py : GUI for custom videos

Instruction

To run

  1. Edit eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py``IVOS_demo_customvideo.py to set the directory of your DAVIS2017 dataset and other configurations.
  2. Download our parameters and place the file as root/checkpoints/GIS-ckpt_standard.pth.
  3. Run eval_GIS_RS1.py``eval_GIS_RS4.py``eval_IVOS.py for real-world GUI evaluation on DAVIS2017 or
  4. Run IVOS_demo_customvideo.py to apply our method on the other videos

To use

explain_qwerty

Left click for the target object and right click for the background.

  1. Select any frame to interact by dragging the slidder under the main image
  2. Give interaction
  3. Run VOS
  4. Find worst frame (if GIS, a candidate frame-RS1 or frames-RS4 are given) and reinteract.
  5. Iterate until you get satisfied with VOS results.
  6. By selecting satisfied button, your evaluation result (consumed time and frames) will be recorded on root/results.

Reference

Please cite our paper if the implementations are useful in your work:

@Inproceedings{
Yuk2021GIS,
title={Guided Interactive Video Object Segmentation Using Reliability-Based Attention Maps},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={CVPR},
year={2021},
url={https://openaccess.thecvf.com/content/CVPR2021/papers/Heo_Guided_Interactive_Video_Object_Segmentation_Using_Reliability-Based_Attention_Maps_CVPR_2021_paper.pdf}
}
@Inproceedings{
Yuk2020IVOS,
title={Interactive Video Object Segmentation Using Global and Local Transfer Modules},
author={Yuk Heo and Yeong Jun Koh and Chang-Su Kim},
booktitle={ECCV},
year={2020},
url={https://openreview.net/forum?id=bo_lWt_aA}
}

Our real-world evaluation demo is based on the GUI of IPNet:

@Inproceedings{
Oh2019IVOS,
title={Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks},
author={Seoung Wug Oh and Joon-Young Lee and Seon Joo Kim},
booktitle={CVPR},
year={2019},
url={https://openaccess.thecvf.com/content_ICCV_2019/papers/Oh_Video_Object_Segmentation_Using_Space-Time_Memory_Networks_ICCV_2019_paper.pdf}
}
You might also like...
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

Owner
Yuk Heo
Computer Vision Engineer, Student of MCL at Korea University. Contact me via [email protected]
Yuk Heo
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

null 248 Dec 25, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

null 34 Oct 8, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

null 10 Mar 16, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 5, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 4, 2023
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

null 22 Jan 4, 2023
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

null 2 Jan 7, 2022