Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Self-Supervised Learning for Molecular Property Prediction" (https://arxiv.org/abs/2110.00987).
Requirements
pytorch 1.7.0
torch-geometric 1.6.3
rdkit 2021.03.1
tqdm 4.31.1
tensorboardx 1.6
To install RDKit, please follow the instructions here http://www.rdkit.org/docs/Install.html
motif_based_pretrain/
contains codes for motif-based graph self-supervised pretraining.finetune/
contains codes for finetuning on MoleculeNet benchmarks for evaluation.
Training
You can pretrain the model by
cd motif_based_pretrain
python pretrain_motif.py
Evaluation
You can evaluate the pretrained model by finetuning on downstream tasks
cd finetune
python finetune.py
Cite
If you find this repo to be useful, please cite our paper. Thank you.
@article{zhang2021motif,
title={Motif-based Graph Self-Supervised Learning for Molecular Property Prediction},
author={Zhang, Zaixi and Liu, Qi and Wang, Hao and Lu, Chengqiang and Lee, Chee-Kong},
journal={arXiv preprint arXiv:2110.00987},
year={2021}
}