Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

Overview

RE results graph visualization and company clustering

Installation

  1. pip install -r requirements.txt

  2. python -m nltk.downloader stopwords

  3. python3.7 main.py

1. Paragraph-Level Relation Extraction using rule-based and SSAN

|- df4rule.py

  • Prerequiste

    • You need csv files that are generated with finiancial_news_api
    • Those files should be located in "visualization_code/rule_base_datasets/*.csv"
  • This code extracts relations with rule-based patterns.

    • (S + V + O) -> (head: S, relation: V, tail: O )

|- df4ssan.py

  • Prerequiste
    • We recommend you run SSAN independently, and make sure all relation extraction.json file from SSAN code saved in "output/*/SSAN_result_all_relation.json"
  • This code convert json file to dataframe and concat all the dataframes from various companies.

2. Graph visualization by degree and betweeness centrality using networkx

|- visualize_cent.py

  • output
    • degree_centrality: "./graph_png/degree.png"
    • betweenness_centrality: "./graph_png/between.png"

3. Get embedding vector with Node2vec Company clustering with K-means and GMM

|- node.py

|-similarity.py

  • output
    • consine similarity: "./similarity_result/consine_similarity.csv"
    • l2 norm: "./similarity_result/l2_norm.csv"

|- company_cluster.py

  • GMM (soft clustering) k: number of clusters

    main.py company_clustering(com_list, com_vec, 4, 'gmm')

  • K-means (hard clustering)

    main.py company_clustering(com_list, com_vec, 4, 'kmeans')

4. Visualize with PCA and TSNE

|-cluster_visualize.py

  • output
    • PCA: "./graph_png/company_cluster_pca.png"
    • TSNE: "./graph_png/company_cluster_tsne.png"

Output

  • degree_centrality: "./graph_png/degree.png"
  • betweenness_centrality: "./graph_png/between.png"
  • consine similarity: "./similarity_result/consine_similarity.csv"
  • l2 norm: "./similarity_result/l2_norm.csv"
  • PCA: "./graph_png/company_cluster_pca.png"
  • TSNE: "./graph_png/company_cluster_tsne.png"
You might also like...
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

 PURE: End-to-End Relation Extraction
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

It's a implement of this paper:Relation extraction via Multi-Level attention CNNs
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

Owner
Jieun Han
Jieun Han
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

null 41 Dec 8, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

null 130 Dec 13, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022