Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Overview

Random Erasing Data Augmentation

===============================================================

Examples

black white random
i1 i2 i3
i4 i5 i6

This code has the source code for the paper "Random Erasing Data Augmentation".

If you find this code useful in your research, please consider citing:

@inproceedings{zhong2020random,
title={Random Erasing Data Augmentation},
author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
year={2020}
}

Other re-implementations

[Official Torchvision in Transform]

[Pytorch: Random Erasing for ImageNet]

[Python Augmentor]

[Person_reID CamStyle]

[Person_reID_baseline + Random Erasing + Re-ranking]

[Keras re-implementation]

Installation

Requirements for Pytorch (see Pytorch installation instructions)

Examples:

CIFAR10

ResNet-20 baseline on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR10: python cifar.py --dataset cifar10 --arch resnet --depth 20 --p 0.5

CIFAR100

ResNet-20 baseline on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20

ResNet-20 + Random Erasing on CIFAR100: python cifar.py --dataset cifar100 --arch resnet --depth 20 --p 0.5

Fashion-MNIST

ResNet-20 baseline on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20

ResNet-20 + Random Erasing on Fashion-MNIST: python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5

Other architectures

For ResNet: --arch resnet --depth (20, 32, 44, 56, 110)

For WRN: --arch wrn --depth 28 --widen-factor 10

Our results

You can reproduce the results in our paper:

 CIFAR10 CIFAR10 CIFAR100 CIFAR100 Fashion-MNIST Fashion-MNIST
Models  Base. +RE Base. +RE Base. +RE
ResNet-20  7.21 6.73 30.84 29.97 4.39 4.02
ResNet-32  6.41 5.66 28.50 27.18 4.16 3.80
ResNet-44  5.53 5.13 25.27 24.29 4.41 4.01
ResNet-56  5.31 4.89 24.82 23.69 4.39 4.13
ResNet-110  5.10 4.61 23.73 22.10 4.40 4.01
WRN-28-10  3.80 3.08 18.49 17.73 4.01 3.65

NOTE THAT, if you use the latest released Fashion-MNIST, the performance of Baseline and RE will slightly lower than the results reported in our paper. Please refer to the issue.

If you have any questions about this code, please do not hesitate to contact us.

Zhun Zhong

Liang Zheng

Comments
  • inconsistency of Fashion-MNIST results using resnet 20

    inconsistency of Fashion-MNIST results using resnet 20

    I ran your code several times on the dataset Fashion-MNIST using resnet20 with random erasing 0.5.

    I didn't get your reported error 4.02% ± 0.07 using your default code "python fashionmnist.py --dataset fashionmnist --arch resnet --depth 20 --p 0.5", the results are roughly 4.5% on average.

    Could you show me how can I get the result ~96% as you mentioned in your paper?

    Thanks a lot.

    opened by WayneDW 3
  • Cannot reproduce the result for fashion-mnist

    Cannot reproduce the result for fashion-mnist

    I trained a model for Fashion-MNIST. Unfortunately the performance is not as good as the result reported in the paper.

    The best accuracy is 95.8% to me, while the error is 3.65 in the paper when training WRN-28-10 for Fashion-MNIST.

    I wonder if the authors can provide the command line argument that used in the paper, so that people (like me) can reproduce the experiment.


    $ python fashionmnist.py --dataset fashionmnist --arch wrn --depth 28 --widen-factor 10 --p 0.5
    ==> Preparing dataset fashionmnist
    ==> creating model 'wrn'
        Total params: 36.48M
    Epoch: [1 | 300] LR: 0.100000
    fashionmnist.py:233: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      losses.update(loss.data[0], inputs.size(0))
    fashionmnist.py:234: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      top1.update(prec1[0], inputs.size(0))
    fashionmnist.py:235: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      top5.update(prec5[0], inputs.size(0))
    Processing |################################| (469/469) Data: 0.224s | Batch: 0.243s | Total: 0:01:53 | ETA: 0:00:01 | Loss: 0.7331 | top1:  72.4383 | top5:  98.0533
    fashionmnist.py:282: UserWarning: volatile was removed and now has no effect. Use `with torch.no_grad():` instead.
      inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)
    fashionmnist.py:290: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      losses.update(loss.data[0], inputs.size(0))
    fashionmnist.py:291: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      top1.update(prec1[0], inputs.size(0))
    fashionmnist.py:292: UserWarning: invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim tensor to a Python number
      top5.update(prec5[0], inputs.size(0))
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.073s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.4355 | top1:  83.4900 | top5:  99.8300
    Epoch: [2 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.4240 | top1:  84.0867 | top5:  99.7117
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.4642 | top1:  82.3600 | top5:  99.6400
    Epoch: [3 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.3611 | top1:  86.7067 | top5:  99.8050
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.5624 | top1:  79.2600 | top5:  99.8100
    Epoch: [4 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.3359 | top1:  87.7300 | top5:  99.8383
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2716 | top1:  90.0700 | top5:  99.9100
    Epoch: [5 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.3178 | top1:  88.3983 | top5:  99.8600
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3080 | top1:  88.7900 | top5:  99.8800
    Epoch: [6 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.3052 | top1:  88.7367 | top5:  99.8583
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3981 | top1:  85.7300 | top5:  99.8600
    Epoch: [7 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2973 | top1:  89.1200 | top5:  99.8800
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2965 | top1:  89.2700 | top5:  99.8800
    Epoch: [8 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2941 | top1:  89.3617 | top5:  99.8650
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2543 | top1:  90.7500 | top5:  99.8900
    Epoch: [9 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2854 | top1:  89.6750 | top5:  99.8817
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3036 | top1:  89.0100 | top5:  99.9200
    Epoch: [10 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2895 | top1:  89.5217 | top5:  99.8667
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2894 | top1:  89.3400 | top5:  99.9100
    Epoch: [11 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2883 | top1:  89.4667 | top5:  99.8717
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3143 | top1:  87.8700 | top5:  99.9000
    Epoch: [12 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2873 | top1:  89.5983 | top5:  99.8767
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2573 | top1:  90.3800 | top5:  99.9100
    Epoch: [13 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.234s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2782 | top1:  89.8850 | top5:  99.8983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2432 | top1:  91.3700 | top5:  99.8800
    Epoch: [14 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2713 | top1:  90.1100 | top5:  99.8967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2748 | top1:  89.7200 | top5:  99.9200
    Epoch: [15 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.234s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2746 | top1:  90.0417 | top5:  99.8850
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2393 | top1:  91.4200 | top5:  99.9100
    Epoch: [16 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2687 | top1:  90.2517 | top5:  99.8867
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2789 | top1:  90.4100 | top5:  99.8700
    Epoch: [17 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2680 | top1:  90.2883 | top5:  99.9000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2640 | top1:  90.6800 | top5:  99.9400
    Epoch: [18 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.234s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2677 | top1:  90.3050 | top5:  99.8867
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2770 | top1:  90.3300 | top5:  99.8900
    Epoch: [19 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.234s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2632 | top1:  90.4933 | top5:  99.8883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2481 | top1:  91.0300 | top5:  99.9100
    Epoch: [20 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2624 | top1:  90.5117 | top5:  99.8883
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2410 | top1:  91.5700 | top5:  99.9300
    Epoch: [21 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2603 | top1:  90.5867 | top5:  99.8967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2186 | top1:  92.5400 | top5:  99.8800
    Epoch: [22 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2587 | top1:  90.7067 | top5:  99.9000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2820 | top1:  89.6800 | top5:  99.8900
    Epoch: [23 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2579 | top1:  90.5083 | top5:  99.9150
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3270 | top1:  88.7400 | top5:  99.8900
    Epoch: [24 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2559 | top1:  90.6717 | top5:  99.9217
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.068s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2292 | top1:  91.7100 | top5:  99.9200
    Epoch: [25 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2542 | top1:  90.8333 | top5:  99.9067
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2636 | top1:  90.0100 | top5:  99.9000
    Epoch: [26 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2540 | top1:  90.8933 | top5:  99.9000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2247 | top1:  92.0800 | top5:  99.9300
    Epoch: [27 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2531 | top1:  90.7483 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2564 | top1:  90.8900 | top5:  99.9200
    Epoch: [28 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2546 | top1:  90.7483 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3142 | top1:  89.7200 | top5:  99.9000
    Epoch: [29 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2510 | top1:  90.9517 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2717 | top1:  90.0200 | top5:  99.9300
    Epoch: [30 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2495 | top1:  90.9550 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2766 | top1:  90.0800 | top5:  99.8900
    Epoch: [31 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2529 | top1:  90.8617 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2128 | top1:  92.3100 | top5:  99.9500
    Epoch: [32 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2469 | top1:  91.1750 | top5:  99.9050
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.4276 | top1:  83.9900 | top5:  99.8600
    Epoch: [33 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2478 | top1:  91.0650 | top5:  99.8983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2393 | top1:  91.3700 | top5:  99.9200
    Epoch: [34 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2454 | top1:  91.0883 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2477 | top1:  90.9400 | top5:  99.9000
    Epoch: [35 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2483 | top1:  90.9550 | top5:  99.9017
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2165 | top1:  92.4300 | top5:  99.9300
    Epoch: [36 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2447 | top1:  91.1467 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3288 | top1:  88.5500 | top5:  99.8800
    Epoch: [37 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2461 | top1:  91.0000 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2363 | top1:  91.3700 | top5:  99.9000
    Epoch: [38 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2450 | top1:  91.1217 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3010 | top1:  88.8600 | top5:  99.9600
    Epoch: [39 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2454 | top1:  91.1633 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2135 | top1:  92.3800 | top5:  99.9600
    Epoch: [40 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2489 | top1:  90.9083 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3074 | top1:  89.1100 | top5:  99.9200
    Epoch: [41 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2484 | top1:  91.0883 | top5:  99.9050
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2024 | top1:  92.9400 | top5:  99.9400
    Epoch: [42 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2479 | top1:  91.0250 | top5:  99.9217
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2520 | top1:  91.2400 | top5:  99.9000
    Epoch: [43 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2423 | top1:  91.1833 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2406 | top1:  91.6800 | top5:  99.9600
    Epoch: [44 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2446 | top1:  91.1267 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2616 | top1:  90.8400 | top5:  99.9200
    Epoch: [45 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2511 | top1:  90.7767 | top5:  99.9017
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2965 | top1:  89.6300 | top5:  99.8600
    Epoch: [46 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2464 | top1:  91.1067 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2545 | top1:  90.7500 | top5:  99.9100
    Epoch: [47 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2419 | top1:  91.3117 | top5:  99.9017
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2284 | top1:  92.0000 | top5:  99.9200
    Epoch: [48 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2428 | top1:  91.1717 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2543 | top1:  90.2500 | top5:  99.9500
    Epoch: [49 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2387 | top1:  91.3400 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2053 | top1:  92.6700 | top5:  99.9600
    Epoch: [50 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2416 | top1:  91.1083 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2301 | top1:  91.9700 | top5:  99.9300
    Epoch: [51 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2416 | top1:  91.1983 | top5:  99.9250
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2581 | top1:  90.8400 | top5:  99.9200
    Epoch: [52 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2443 | top1:  91.2017 | top5:  99.9083
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2100 | top1:  92.2600 | top5:  99.9200
    Epoch: [53 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2414 | top1:  91.2667 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2372 | top1:  91.6000 | top5:  99.9400
    Epoch: [54 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2417 | top1:  91.4067 | top5:  99.9033
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2182 | top1:  92.4000 | top5:  99.9100
    Epoch: [55 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2431 | top1:  91.1033 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2601 | top1:  90.7800 | top5:  99.8900
    Epoch: [56 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2433 | top1:  91.2333 | top5:  99.9217
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1988 | top1:  93.0300 | top5:  99.9700
    Epoch: [57 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2401 | top1:  91.3783 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3386 | top1:  88.7700 | top5:  99.9000
    Epoch: [58 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2401 | top1:  91.2800 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2491 | top1:  90.6900 | top5:  99.9600
    Epoch: [59 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2421 | top1:  91.2583 | top5:  99.9217
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2504 | top1:  90.9100 | top5:  99.9200
    Epoch: [60 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2402 | top1:  91.3017 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2381 | top1:  91.4700 | top5:  99.9700
    Epoch: [61 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2447 | top1:  91.0817 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3353 | top1:  87.9900 | top5:  99.9100
    Epoch: [62 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2384 | top1:  91.3983 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2222 | top1:  92.1000 | top5:  99.9400
    Epoch: [63 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2418 | top1:  91.2750 | top5:  99.9150
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2567 | top1:  90.9800 | top5:  99.9100
    Epoch: [64 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2372 | top1:  91.4500 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2522 | top1:  91.0700 | top5:  99.9500
    Epoch: [65 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2399 | top1:  91.2933 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3913 | top1:  85.2500 | top5:  99.9400
    Epoch: [66 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2389 | top1:  91.2683 | top5:  99.9067
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2375 | top1:  91.9500 | top5:  99.9600
    Epoch: [67 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2375 | top1:  91.3700 | top5:  99.9250
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3387 | top1:  88.0800 | top5:  99.9200
    Epoch: [68 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2415 | top1:  91.1967 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2253 | top1:  91.7100 | top5:  99.9600
    Epoch: [69 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2398 | top1:  91.3350 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2029 | top1:  92.8500 | top5:  99.9600
    Epoch: [70 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2391 | top1:  91.2267 | top5:  99.9417
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2420 | top1:  91.4200 | top5:  99.9100
    Epoch: [71 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2365 | top1:  91.3500 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2272 | top1:  91.7900 | top5:  99.9400
    Epoch: [72 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2360 | top1:  91.4800 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2120 | top1:  92.4500 | top5:  99.8900
    Epoch: [73 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2383 | top1:  91.3700 | top5:  99.9100
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2247 | top1:  92.1500 | top5:  99.9400
    Epoch: [74 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2414 | top1:  91.2567 | top5:  99.9400
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2639 | top1:  90.3600 | top5:  99.9300
    Epoch: [75 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2368 | top1:  91.4550 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3011 | top1:  89.2600 | top5:  99.8700
    Epoch: [76 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2386 | top1:  91.4017 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2539 | top1:  91.3800 | top5:  99.9000
    Epoch: [77 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2393 | top1:  91.3683 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2681 | top1:  90.2500 | top5:  99.9200
    Epoch: [78 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2347 | top1:  91.5383 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2214 | top1:  92.0800 | top5:  99.9400
    Epoch: [79 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2388 | top1:  91.3367 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2464 | top1:  91.0400 | top5:  99.9800
    Epoch: [80 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2378 | top1:  91.3800 | top5:  99.9467
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2196 | top1:  92.4200 | top5:  99.9400
    Epoch: [81 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2417 | top1:  91.2183 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2716 | top1:  90.6700 | top5:  99.9000
    Epoch: [82 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2393 | top1:  91.3300 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2639 | top1:  91.2500 | top5:  99.9600
    Epoch: [83 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2360 | top1:  91.4417 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3231 | top1:  89.4300 | top5:  99.8400
    Epoch: [84 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2386 | top1:  91.3150 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2418 | top1:  91.3000 | top5:  99.9700
    Epoch: [85 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2384 | top1:  91.2550 | top5:  99.9350
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2139 | top1:  92.3100 | top5:  99.9300
    Epoch: [86 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2382 | top1:  91.4917 | top5:  99.9400
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2260 | top1:  92.4200 | top5:  99.9200
    Epoch: [87 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2361 | top1:  91.4900 | top5:  99.9100
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2359 | top1:  91.3300 | top5:  99.9400
    Epoch: [88 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2384 | top1:  91.4567 | top5:  99.9000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2621 | top1:  90.7500 | top5:  99.8200
    Epoch: [89 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2346 | top1:  91.5283 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2029 | top1:  92.7100 | top5:  99.9200
    Epoch: [90 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2385 | top1:  91.3933 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2258 | top1:  92.0700 | top5:  99.9500
    Epoch: [91 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2342 | top1:  91.4667 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2749 | top1:  90.5400 | top5:  99.8400
    Epoch: [92 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.234s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2368 | top1:  91.4583 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2636 | top1:  91.0400 | top5:  99.9000
    Epoch: [93 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2366 | top1:  91.4250 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2081 | top1:  92.7800 | top5:  99.9400
    Epoch: [94 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2361 | top1:  91.4567 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3288 | top1:  88.7100 | top5:  99.9100
    Epoch: [95 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2362 | top1:  91.4283 | top5:  99.9300
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2725 | top1:  90.6700 | top5:  99.8800
    Epoch: [96 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2387 | top1:  91.3250 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2274 | top1:  92.0000 | top5:  99.9300
    Epoch: [97 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2361 | top1:  91.4533 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2073 | top1:  92.5200 | top5:  99.9300
    Epoch: [98 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2414 | top1:  91.1900 | top5:  99.9100
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2220 | top1:  91.9800 | top5:  99.9400
    Epoch: [99 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2412 | top1:  91.2300 | top5:  99.9483
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2427 | top1:  91.4100 | top5:  99.9300
    Epoch: [100 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2383 | top1:  91.4100 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2911 | top1:  89.6300 | top5:  99.8200
    Epoch: [101 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2362 | top1:  91.3300 | top5:  99.9250
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2823 | top1:  91.0000 | top5:  99.9100
    Epoch: [102 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2345 | top1:  91.4333 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2747 | top1:  89.9800 | top5:  99.8100
    Epoch: [103 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2366 | top1:  91.4133 | top5:  99.9333
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2189 | top1:  92.0300 | top5:  99.8800
    Epoch: [104 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2351 | top1:  91.4167 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2445 | top1:  91.1900 | top5:  99.9500
    Epoch: [105 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2370 | top1:  91.3267 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2552 | top1:  90.7900 | top5:  99.9000
    Epoch: [106 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2391 | top1:  91.3883 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1830 | top1:  93.6300 | top5:  99.9300
    Epoch: [107 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2352 | top1:  91.4950 | top5:  99.9133
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2165 | top1:  92.1800 | top5:  99.9400
    Epoch: [108 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2380 | top1:  91.4183 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3041 | top1:  89.1600 | top5:  99.9100
    Epoch: [109 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2393 | top1:  91.3933 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2171 | top1:  92.4800 | top5:  99.8800
    Epoch: [110 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2357 | top1:  91.4417 | top5:  99.9117
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2399 | top1:  91.2600 | top5:  100.0000
    Epoch: [111 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2369 | top1:  91.4117 | top5:  99.9067
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2501 | top1:  90.9600 | top5:  99.9000
    Epoch: [112 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2369 | top1:  91.2967 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2045 | top1:  92.6100 | top5:  99.9900
    Epoch: [113 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.248s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2348 | top1:  91.4950 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2324 | top1:  91.7700 | top5:  99.9200
    Epoch: [114 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:56 | ETA: 0:00:01 | Loss: 0.2385 | top1:  91.3567 | top5:  99.8967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2325 | top1:  91.3500 | top5:  99.9400
    Epoch: [115 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2355 | top1:  91.2417 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2273 | top1:  91.5300 | top5:  99.9700
    Epoch: [116 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2369 | top1:  91.4167 | top5:  99.9150
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2273 | top1:  92.1000 | top5:  99.9600
    Epoch: [117 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2378 | top1:  91.3883 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2416 | top1:  90.8100 | top5:  99.9200
    Epoch: [118 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2368 | top1:  91.3700 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2143 | top1:  92.0200 | top5:  99.9400
    Epoch: [119 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2351 | top1:  91.3817 | top5:  99.9383
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2323 | top1:  91.8100 | top5:  99.9500
    Epoch: [120 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2339 | top1:  91.5633 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2840 | top1:  89.7700 | top5:  99.9400
    Epoch: [121 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2344 | top1:  91.5200 | top5:  99.9317
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2427 | top1:  91.0300 | top5:  99.9600
    Epoch: [122 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2402 | top1:  91.2400 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2291 | top1:  92.0900 | top5:  99.9000
    Epoch: [123 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2354 | top1:  91.4683 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2340 | top1:  91.6100 | top5:  99.9500
    Epoch: [124 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2343 | top1:  91.5433 | top5:  99.8950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2932 | top1:  90.0900 | top5:  99.9300
    Epoch: [125 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2378 | top1:  91.3633 | top5:  99.9450
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2077 | top1:  92.5700 | top5:  99.9700
    Epoch: [126 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2337 | top1:  91.5717 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2225 | top1:  91.9000 | top5:  99.9400
    Epoch: [127 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2350 | top1:  91.4583 | top5:  99.9333
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2306 | top1:  91.5300 | top5:  99.9200
    Epoch: [128 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2350 | top1:  91.4283 | top5:  99.9250
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2705 | top1:  90.2500 | top5:  99.9000
    Epoch: [129 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2332 | top1:  91.5700 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2218 | top1:  92.0300 | top5:  99.9300
    Epoch: [130 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2386 | top1:  91.3167 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.2108 | top1:  92.8400 | top5:  99.9600
    Epoch: [131 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2321 | top1:  91.6767 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2593 | top1:  91.0300 | top5:  99.8500
    Epoch: [132 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2363 | top1:  91.3567 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2272 | top1:  91.8700 | top5:  99.8800
    Epoch: [133 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2397 | top1:  91.2867 | top5:  99.9100
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2404 | top1:  91.7300 | top5:  99.9300
    Epoch: [134 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2352 | top1:  91.5950 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2118 | top1:  92.1500 | top5:  99.9400
    Epoch: [135 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2369 | top1:  91.4733 | top5:  99.9267
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2302 | top1:  92.2100 | top5:  99.9000
    Epoch: [136 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2375 | top1:  91.5867 | top5:  99.9167
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2122 | top1:  92.3200 | top5:  99.9200
    Epoch: [137 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2366 | top1:  91.4033 | top5:  99.9417
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3695 | top1:  87.5800 | top5:  99.8900
    Epoch: [138 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2329 | top1:  91.5150 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2554 | top1:  91.3800 | top5:  99.9200
    Epoch: [139 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2345 | top1:  91.4283 | top5:  99.9183
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2050 | top1:  92.7200 | top5:  99.9500
    Epoch: [140 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2373 | top1:  91.4100 | top5:  99.9200
    Processing |################################| (100/100) Data: 0.064s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2427 | top1:  91.8200 | top5:  99.9300
    Epoch: [141 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2366 | top1:  91.4500 | top5:  99.9350
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2626 | top1:  90.8700 | top5:  99.9200
    Epoch: [142 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2347 | top1:  91.5450 | top5:  99.9350
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.3485 | top1:  88.7600 | top5:  99.9300
    Epoch: [143 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2329 | top1:  91.5050 | top5:  99.9367
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2365 | top1:  91.8200 | top5:  99.8700
    Epoch: [144 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2345 | top1:  91.5067 | top5:  99.9250
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2126 | top1:  92.5700 | top5:  99.9600
    Epoch: [145 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2350 | top1:  91.5517 | top5:  99.9433
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1965 | top1:  92.7600 | top5:  99.9300
    Epoch: [146 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2354 | top1:  91.3917 | top5:  99.9233
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2084 | top1:  92.8200 | top5:  99.9200
    Epoch: [147 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2346 | top1:  91.5817 | top5:  99.9350
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2268 | top1:  91.8200 | top5:  99.9300
    Epoch: [148 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2365 | top1:  91.4417 | top5:  99.9400
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2263 | top1:  91.9700 | top5:  99.9400
    Epoch: [149 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2346 | top1:  91.5017 | top5:  99.9400
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1839 | top1:  93.6400 | top5:  99.9700
    Epoch: [150 | 300] LR: 0.100000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.2376 | top1:  91.4083 | top5:  99.9283
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2294 | top1:  91.6700 | top5:  99.9600
    Epoch: [151 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1716 | top1:  93.8800 | top5:  99.9567
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1446 | top1:  94.8500 | top5:  99.9700
    Epoch: [152 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.230s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1509 | top1:  94.6667 | top5:  99.9750
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1418 | top1:  95.0000 | top5:  99.9800
    Epoch: [153 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1445 | top1:  94.7533 | top5:  99.9800
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1441 | top1:  95.0300 | top5:  99.9700
    Epoch: [154 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1374 | top1:  95.1467 | top5:  99.9800
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1418 | top1:  95.0700 | top5:  99.9600
    Epoch: [155 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.1351 | top1:  95.0483 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1393 | top1:  95.0900 | top5:  99.9600
    Epoch: [156 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1313 | top1:  95.3400 | top5:  99.9833
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1428 | top1:  95.1600 | top5:  99.9800
    Epoch: [157 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.1295 | top1:  95.3350 | top5:  99.9850
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1418 | top1:  95.0600 | top5:  99.9600
    Epoch: [158 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1268 | top1:  95.5400 | top5:  99.9833
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1455 | top1:  94.9400 | top5:  99.9600
    Epoch: [159 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1243 | top1:  95.5867 | top5:  99.9850
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1429 | top1:  95.0900 | top5:  99.9700
    Epoch: [160 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1208 | top1:  95.6983 | top5:  99.9833
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1487 | top1:  95.0600 | top5:  99.9800
    Epoch: [161 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1208 | top1:  95.6783 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1375 | top1:  95.2100 | top5:  99.9800
    Epoch: [162 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1181 | top1:  95.8133 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1411 | top1:  95.2000 | top5:  99.9800
    Epoch: [163 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1170 | top1:  95.7667 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1406 | top1:  95.2300 | top5:  99.9600
    Epoch: [164 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1164 | top1:  95.8217 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1460 | top1:  95.0000 | top5:  99.9700
    Epoch: [165 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1168 | top1:  95.8483 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1452 | top1:  94.9500 | top5:  99.9700
    Epoch: [166 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1136 | top1:  95.9683 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1479 | top1:  95.2000 | top5:  99.9600
    Epoch: [167 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1132 | top1:  95.8933 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1423 | top1:  95.2300 | top5:  99.9700
    Epoch: [168 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1108 | top1:  96.0450 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1521 | top1:  94.9300 | top5:  99.9600
    Epoch: [169 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1127 | top1:  96.0133 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1517 | top1:  94.9200 | top5:  99.9800
    Epoch: [170 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1126 | top1:  95.9700 | top5:  99.9850
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1565 | top1:  94.8500 | top5:  99.9600
    Epoch: [171 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1103 | top1:  96.1033 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1506 | top1:  95.3200 | top5:  99.9800
    Epoch: [172 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1084 | top1:  96.0883 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1586 | top1:  94.5800 | top5:  99.9700
    Epoch: [173 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1103 | top1:  96.0350 | top5:  99.9850
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1544 | top1:  95.0600 | top5:  100.0000
    Epoch: [174 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1115 | top1:  95.9500 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1437 | top1:  95.4200 | top5:  99.9700
    Epoch: [175 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.1100 | top1:  96.0017 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1629 | top1:  94.5500 | top5:  99.9700
    Epoch: [176 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.1072 | top1:  96.1467 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1714 | top1:  94.4600 | top5:  99.9900
    Epoch: [177 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1070 | top1:  96.2250 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1497 | top1:  94.9800 | top5:  99.9700
    Epoch: [178 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1069 | top1:  96.2317 | top5:  99.9767
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1515 | top1:  95.2400 | top5:  99.9600
    Epoch: [179 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1075 | top1:  96.1467 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1577 | top1:  94.7700 | top5:  99.9600
    Epoch: [180 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1058 | top1:  96.1717 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1495 | top1:  95.2300 | top5:  99.9600
    Epoch: [181 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1037 | top1:  96.2583 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1686 | top1:  94.7200 | top5:  99.9900
    Epoch: [182 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1073 | top1:  96.1050 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1577 | top1:  95.0400 | top5:  99.9800
    Epoch: [183 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1057 | top1:  96.2117 | top5:  99.9867
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1707 | top1:  94.8200 | top5:  99.9600
    Epoch: [184 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.1066 | top1:  96.2200 | top5:  99.9833
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1571 | top1:  94.9200 | top5:  99.9800
    Epoch: [185 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1061 | top1:  96.1750 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.064s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1620 | top1:  94.7000 | top5:  99.9500
    Epoch: [186 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1056 | top1:  96.2350 | top5:  99.9817
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1569 | top1:  95.0000 | top5:  99.9900
    Epoch: [187 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1030 | top1:  96.2850 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1613 | top1:  94.8500 | top5:  99.9700
    Epoch: [188 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1047 | top1:  96.2433 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1557 | top1:  95.0000 | top5:  99.9900
    Epoch: [189 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1036 | top1:  96.2767 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1701 | top1:  94.5700 | top5:  99.9800
    Epoch: [190 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1035 | top1:  96.1833 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1655 | top1:  94.5700 | top5:  99.9700
    Epoch: [191 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1008 | top1:  96.3783 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1644 | top1:  94.9100 | top5:  99.9400
    Epoch: [192 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1012 | top1:  96.3550 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1523 | top1:  95.2900 | top5:  99.9400
    Epoch: [193 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0980 | top1:  96.5950 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1687 | top1:  94.7100 | top5:  99.9300
    Epoch: [194 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1014 | top1:  96.4067 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1629 | top1:  94.6900 | top5:  99.9600
    Epoch: [195 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.1002 | top1:  96.4700 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1560 | top1:  95.1800 | top5:  99.9800
    Epoch: [196 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0971 | top1:  96.6000 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1717 | top1:  94.7700 | top5:  99.9400
    Epoch: [197 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0990 | top1:  96.4483 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1618 | top1:  95.0700 | top5:  99.9700
    Epoch: [198 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0984 | top1:  96.6167 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1741 | top1:  94.8200 | top5:  99.9400
    Epoch: [199 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0968 | top1:  96.5150 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1560 | top1:  95.2800 | top5:  99.9800
    Epoch: [200 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0996 | top1:  96.4817 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1908 | top1:  94.1100 | top5:  99.9700
    Epoch: [201 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0977 | top1:  96.4900 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1693 | top1:  94.9300 | top5:  99.9600
    Epoch: [202 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0959 | top1:  96.5683 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1711 | top1:  94.6100 | top5:  99.9500
    Epoch: [203 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0977 | top1:  96.4850 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1863 | top1:  94.1700 | top5:  99.9700
    Epoch: [204 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0964 | top1:  96.5267 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1712 | top1:  94.7400 | top5:  99.9600
    Epoch: [205 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0953 | top1:  96.6000 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1681 | top1:  95.0600 | top5:  99.9700
    Epoch: [206 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0939 | top1:  96.6883 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1750 | top1:  94.7500 | top5:  99.9400
    Epoch: [207 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0971 | top1:  96.5600 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1643 | top1:  95.0300 | top5:  99.9700
    Epoch: [208 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0939 | top1:  96.6550 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.064s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1751 | top1:  94.5600 | top5:  99.9700
    Epoch: [209 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0946 | top1:  96.6317 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.067s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1670 | top1:  94.7600 | top5:  99.9600
    Epoch: [210 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0947 | top1:  96.5900 | top5:  99.9800
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1627 | top1:  94.9800 | top5:  99.9700
    Epoch: [211 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0934 | top1:  96.7133 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1719 | top1:  94.8600 | top5:  99.9600
    Epoch: [212 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0923 | top1:  96.6433 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1824 | top1:  94.5300 | top5:  100.0000
    Epoch: [213 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0919 | top1:  96.8167 | top5:  99.9833
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1674 | top1:  94.9400 | top5:  99.9600
    Epoch: [214 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0912 | top1:  96.8517 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1677 | top1:  94.7400 | top5:  99.9600
    Epoch: [215 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0912 | top1:  96.7800 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1703 | top1:  94.9600 | top5:  99.9800
    Epoch: [216 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0928 | top1:  96.7667 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1619 | top1:  94.9600 | top5:  99.9600
    Epoch: [217 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0905 | top1:  96.7950 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1825 | top1:  94.5100 | top5:  99.9700
    Epoch: [218 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0933 | top1:  96.7133 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1886 | top1:  94.6100 | top5:  99.9600
    Epoch: [219 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0893 | top1:  96.7733 | top5:  99.9883
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1745 | top1:  94.3700 | top5:  99.9600
    Epoch: [220 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0913 | top1:  96.7033 | top5:  99.9900
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2088 | top1:  93.9700 | top5:  99.9500
    Epoch: [221 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0899 | top1:  96.8733 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1735 | top1:  94.7200 | top5:  99.9900
    Epoch: [222 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0899 | top1:  96.8133 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1708 | top1:  94.8400 | top5:  99.9300
    Epoch: [223 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0879 | top1:  96.9017 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.064s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1671 | top1:  94.8000 | top5:  99.9900
    Epoch: [224 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0877 | top1:  96.8917 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1825 | top1:  94.4200 | top5:  99.9900
    Epoch: [225 | 300] LR: 0.010000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0913 | top1:  96.7467 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1705 | top1:  94.8200 | top5:  99.9800
    Epoch: [226 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0632 | top1:  97.8817 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1510 | top1:  95.5100 | top5:  99.9700
    Epoch: [227 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0530 | top1:  98.2533 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1558 | top1:  95.6200 | top5:  99.9800
    Epoch: [228 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0457 | top1:  98.4983 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1614 | top1:  95.5300 | top5:  99.9800
    Epoch: [229 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0443 | top1:  98.5267 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1622 | top1:  95.5900 | top5:  99.9800
    Epoch: [230 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0418 | top1:  98.6083 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1630 | top1:  95.5800 | top5:  99.9600
    Epoch: [231 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0432 | top1:  98.6133 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1647 | top1:  95.4800 | top5:  99.9900
    Epoch: [232 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0400 | top1:  98.7133 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1653 | top1:  95.5500 | top5:  99.9600
    Epoch: [233 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0392 | top1:  98.7033 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1648 | top1:  95.5900 | top5:  99.9600
    Epoch: [234 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0383 | top1:  98.7433 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1688 | top1:  95.5400 | top5:  99.9700
    Epoch: [235 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0370 | top1:  98.8433 | top5:  99.9933
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1683 | top1:  95.6700 | top5:  99.9400
    Epoch: [236 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0362 | top1:  98.8500 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1723 | top1:  95.6300 | top5:  99.9700
    Epoch: [237 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0359 | top1:  98.8517 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1733 | top1:  95.6700 | top5:  99.9700
    Epoch: [238 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0357 | top1:  98.8233 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1760 | top1:  95.5300 | top5:  99.9600
    Epoch: [239 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0358 | top1:  98.8517 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1742 | top1:  95.6900 | top5:  99.9400
    Epoch: [240 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0341 | top1:  98.8633 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1779 | top1:  95.6600 | top5:  99.9500
    Epoch: [241 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0349 | top1:  98.8650 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.071s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1771 | top1:  95.6300 | top5:  99.9600
    Epoch: [242 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0332 | top1:  98.9100 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1800 | top1:  95.6800 | top5:  99.9600
    Epoch: [243 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0349 | top1:  98.8383 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1813 | top1:  95.6300 | top5:  99.9500
    Epoch: [244 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0313 | top1:  99.0000 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1839 | top1:  95.6100 | top5:  99.9400
    Epoch: [245 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0317 | top1:  98.9400 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1823 | top1:  95.6500 | top5:  99.9300
    Epoch: [246 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0319 | top1:  98.9567 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1809 | top1:  95.5200 | top5:  99.9300
    Epoch: [247 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0320 | top1:  98.9733 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1846 | top1:  95.6700 | top5:  99.9600
    Epoch: [248 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0310 | top1:  98.9933 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1859 | top1:  95.6000 | top5:  99.9600
    Epoch: [249 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0316 | top1:  98.9383 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1794 | top1:  95.7500 | top5:  99.9400
    Epoch: [250 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0309 | top1:  98.9717 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1838 | top1:  95.6600 | top5:  99.9500
    Epoch: [251 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0313 | top1:  98.9983 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1900 | top1:  95.7000 | top5:  99.9500
    Epoch: [252 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0317 | top1:  99.0250 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1847 | top1:  95.6600 | top5:  99.9400
    Epoch: [253 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0306 | top1:  98.9817 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1885 | top1:  95.6700 | top5:  99.9300
    Epoch: [254 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0316 | top1:  98.9500 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1884 | top1:  95.4400 | top5:  99.9600
    Epoch: [255 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0302 | top1:  99.0100 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1866 | top1:  95.5100 | top5:  99.9500
    Epoch: [256 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0291 | top1:  99.0650 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1853 | top1:  95.6600 | top5:  99.9400
    Epoch: [257 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0301 | top1:  99.0100 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1827 | top1:  95.6000 | top5:  99.9500
    Epoch: [258 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0295 | top1:  99.0383 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1844 | top1:  95.7100 | top5:  99.9800
    Epoch: [259 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0290 | top1:  99.0267 | top5:  99.9917
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1841 | top1:  95.6100 | top5:  99.9700
    Epoch: [260 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0307 | top1:  98.9867 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1809 | top1:  95.6900 | top5:  99.9400
    Epoch: [261 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0278 | top1:  99.0800 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1884 | top1:  95.5100 | top5:  99.9700
    Epoch: [262 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0278 | top1:  99.0800 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1911 | top1:  95.4900 | top5:  99.9400
    Epoch: [263 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0296 | top1:  99.0550 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1901 | top1:  95.5800 | top5:  99.9500
    Epoch: [264 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0283 | top1:  99.0433 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1888 | top1:  95.4300 | top5:  99.9600
    Epoch: [265 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0277 | top1:  99.0567 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1997 | top1:  95.4400 | top5:  99.9600
    Epoch: [266 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.230s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0277 | top1:  99.0450 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1892 | top1:  95.5200 | top5:  99.9700
    Epoch: [267 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0270 | top1:  99.0950 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1875 | top1:  95.5200 | top5:  99.9300
    Epoch: [268 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0264 | top1:  99.1367 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1944 | top1:  95.5100 | top5:  99.9400
    Epoch: [269 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0281 | top1:  99.0933 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1942 | top1:  95.4300 | top5:  99.9400
    Epoch: [270 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0282 | top1:  99.0950 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1903 | top1:  95.6300 | top5:  99.9100
    Epoch: [271 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0263 | top1:  99.1450 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1964 | top1:  95.6000 | top5:  99.9500
    Epoch: [272 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0267 | top1:  99.1200 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1912 | top1:  95.5200 | top5:  99.9200
    Epoch: [273 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0263 | top1:  99.1000 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1889 | top1:  95.5900 | top5:  99.9300
    Epoch: [274 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0280 | top1:  99.0517 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1908 | top1:  95.6100 | top5:  99.9400
    Epoch: [275 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0272 | top1:  99.0967 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1865 | top1:  95.6200 | top5:  99.9600
    Epoch: [276 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0266 | top1:  99.0967 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1931 | top1:  95.5200 | top5:  99.9300
    Epoch: [277 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:54 | ETA: 0:00:01 | Loss: 0.0258 | top1:  99.1850 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1928 | top1:  95.6400 | top5:  99.9400
    Epoch: [278 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.245s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0265 | top1:  99.1350 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1931 | top1:  95.8000 | top5:  99.9600
    Epoch: [279 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0264 | top1:  99.1433 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1924 | top1:  95.6600 | top5:  99.9400
    Epoch: [280 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0262 | top1:  99.1283 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1945 | top1:  95.5500 | top5:  99.9400
    Epoch: [281 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0279 | top1:  99.0683 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1858 | top1:  95.7800 | top5:  99.9500
    Epoch: [282 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0282 | top1:  99.0833 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1892 | top1:  95.7600 | top5:  99.9600
    Epoch: [283 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0256 | top1:  99.1250 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1959 | top1:  95.5200 | top5:  99.9600
    Epoch: [284 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0269 | top1:  99.1433 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1892 | top1:  95.7400 | top5:  99.9800
    Epoch: [285 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0246 | top1:  99.2100 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1935 | top1:  95.6500 | top5:  99.9600
    Epoch: [286 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0260 | top1:  99.1450 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1984 | top1:  95.5100 | top5:  99.9600
    Epoch: [287 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0262 | top1:  99.1183 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1970 | top1:  95.6800 | top5:  99.9800
    Epoch: [288 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0253 | top1:  99.1483 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2011 | top1:  95.5300 | top5:  99.9800
    Epoch: [289 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0269 | top1:  99.1283 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1962 | top1:  95.6500 | top5:  99.9600
    Epoch: [290 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0248 | top1:  99.1950 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1990 | top1:  95.7000 | top5:  99.9700
    Epoch: [291 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0252 | top1:  99.2133 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1970 | top1:  95.6700 | top5:  99.9900
    Epoch: [292 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0260 | top1:  99.1783 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2004 | top1:  95.4500 | top5:  99.9600
    Epoch: [293 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0255 | top1:  99.1583 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1945 | top1:  95.7400 | top5:  99.9900
    Epoch: [294 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.231s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0244 | top1:  99.2317 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1986 | top1:  95.7200 | top5:  99.9900
    Epoch: [295 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0247 | top1:  99.2000 | top5:  99.9967
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.2014 | top1:  95.4800 | top5:  99.9500
    Epoch: [296 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0253 | top1:  99.1650 | top5:  99.9950
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.070s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1943 | top1:  95.5200 | top5:  99.9500
    Epoch: [297 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.246s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0247 | top1:  99.2200 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1941 | top1:  95.6200 | top5:  99.9600
    Epoch: [298 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0239 | top1:  99.2350 | top5:  99.9983
    Processing |################################| (100/100) Data: 0.065s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1980 | top1:  95.6500 | top5:  99.9600
    Epoch: [299 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.232s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0253 | top1:  99.1667 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.070s | Total: 0:00:07 | ETA: 0:00:01 | Loss: 0.1886 | top1:  95.7300 | top5:  99.9700
    Epoch: [300 | 300] LR: 0.001000
    Processing |################################| (469/469) Data: 0.233s | Batch: 0.247s | Total: 0:01:55 | ETA: 0:00:01 | Loss: 0.0242 | top1:  99.1950 | top5:  100.0000
    Processing |################################| (100/100) Data: 0.066s | Batch: 0.069s | Total: 0:00:06 | ETA: 0:00:01 | Loss: 0.1942 | top1:  95.7000 | top5:  99.9500
    Best acc:
    tensor(95.8000, device='cuda:0')
    
    opened by Atry 3
  • 实现与论文叙述不一致

    实现与论文叙述不一致

    看到您写的代码跟RandomResizeCrop很像,同时您的论文Algorithm 1中提到re = Rand(r1, r2), 可是实现代码中(transfrom.py)并没有r2,而是直接取了r1的倒数作为r2,RandomResizeCrop是上下限都可以设置的,想问一下,是不是有其他考虑?

    opened by mashuiping 2
  • RE-R in the paper

    RE-R in the paper

    Simple but effective, very interesting work! I wonder to which methods RE-R: erasing with random values corresponds; (1) region level randomization or (2) pixel level randomization.

    (1) img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1) (2) img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))

    Did you compare the two of them?

    opened by yu4u 2
  • Could you add a LICENSE.md?

    Could you add a LICENSE.md?

    @zhunzhong07 This repository looks very useful thanks for putting it up!

    Would you mind adding a license to this? Without a license it is impossible to legally clone or run this code. If you're not sure and would like a suggestion the Apache 2.0 license is a good option. A quick summary of apache 2.0 is available at tl;dr legal. This is the same license used by TensorFlow and it is compatible with the pytorch license. Here is the license text:

    Apache License, Version 2.0 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
    
    TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
    
    1. Definitions.
    
    "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
    
    "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
    
    "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
    
    "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.
    
    "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
    
    "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
    
    "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
    
    "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
    
    "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
    
    "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
    
    2. Grant of Copyright License.
    
    Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
    
    3. Grant of Patent License.
    
    Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
    
    4. Redistribution.
    
    You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
    
    You must give any other recipients of the Work or Derivative Works a copy of this License; and You must cause any modified files to carry prominent notices stating that You changed the files; and You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
    
    5. Submission of Contributions.
    
    Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
    
    6. Trademarks.
    
    This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
    
    7. Disclaimer of Warranty.
    
    Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
    
    8. Limitation of Liability.
    
    In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
    
    9. Accepting Warranty or Additional Liability.
    
    While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
    
    END OF TERMS AND CONDITIONS
    
    APPENDIX: How to apply the Apache License to your work
    
    To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.
    
    Copyright [yyyy] [name of copyright owner]
    
    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
    
    http://www.apache.org/licenses/LICENSE-2.0
    
    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    
    
    opened by ahundt 1
  • InvalidArgumentError: ValueError: low >= high

    InvalidArgumentError: ValueError: low >= high

    Hi zhunzhong, I think there is a bug in you code, `for attempt in range(100): area = img.size()[1] * img.size()[2]

            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1/self.r1)
    
            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))
    
            if w <= img.size()[2] and h <= img.size()[1]:
                x1 = random.randint(0, img.size()[1] - h)
                y1 = random.randint(0, img.size()[2] - w)
                if img.size()[0] == 3:
                    img[0, x1:x1+h, y1:y1+w] = self.mean[0]
                    img[1, x1:x1+h, y1:y1+w] = self.mean[1]
                    img[2, x1:x1+h, y1:y1+w] = self.mean[2]
                else:
                    img[0, x1:x1+h, y1:y1+w] = self.mean[0]
                return img`
    

    should it be "if w < img.size()[2] and h < img.size()[1]:"? Otherwise if h == img.size()[1], random.randint(0, img.size()[1] - h) will raise "ValueError: low >= high".

    opened by shllhs 1
  • All trained model

    All trained model

    Hi @zhunzhong07 Thanks for your amazing work. Can you sharing your trained models for CIFAR10, CIFAR100 and Imagenet? I want all these models for my research work.

    Thanks,

    opened by kmr2017 0
  • The resnet44/56/110 use BottleNeck,why n = (depth-2) // 6 ?

    The resnet44/56/110 use BottleNeck,why n = (depth-2) // 6 ?

    The resnet44/56/110 use BottleNeck,why n = (depth-2) // 6 ? The bottleNeck has three conv, for example the n of resnet44 is (44-2) // 6 = 7, if use bottleNeck, there are 21 convs in one stage(2-4), so it can't be resnet44!

    opened by b762927 0
  • Fashion-MNISST result update

    Fashion-MNISST result update

    Can you update the fashion-MNIST results in the paper or mention results in readme file? Mentioned results are inconsistent?

    or share fashion-MNIST dataset, on which you performed the experment?

    Thanks

    opened by TeerathChandani 0
Owner
Zhun Zhong
Zhun Zhong
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile <- Makefile with co

Federico Baldassarre 31 Sep 25, 2021
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 8, 2023
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

null 45 Dec 8, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 4, 2023
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 3, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

null 9 Nov 7, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 1, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

null 248 Dec 4, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022