Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

Related tags

Deep Learning DGSR
Overview

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation

Requirements

  1. OS: Ubuntu 16.04 or higher version
  2. python3.7
  3. Supported (tested) CUDA Versions: V10.2
  4. python modules: refer to the modules in requirements.txt

Code Structure

  1. The entry script for training and evaluation is: train.py
  2. The config file is: config.yaml
  3. The script for data preprocess and dataloader: utility.py
  4. The model folder: ./model/.
  5. The experimental logs in tensorboard-format are saved in ./logs.
  6. The experimental logs in txt-format are saved in ./performance.
  7. The best model for each experimental setting is saved in ./model_saves.
  8. The recommendation results in the evaluation are recorded in ./results.
  9. The ./logs, ./performance, ./model_saves, ./results files will be generated automatically when first time runing the codes.
  10. The script get_all_the_res.py is used to print the performance of all the trained and tested models on the screen.

How to Run

  1. Download the dataset, decompress it and put it in the top directory with the following command. Note that the downloaded files include two datasets ulilized in the paper: iFashion and amazon_fashion.

    tar zxvf dgsr_dataset.tar.gz. 
    
  2. Settings in the configure file config.yaml are basic experimental settings, which are usually fixed in the experiments. To tune other hyper-parameters, you can use command line to pass the parameters. The command line supported hyper-parameters including: the dataset (-d), sequence length (-l) and embedding size (-e). You can also specify which gpu device (-g) to use in the experiments.

  3. Run the training and evaluation with the specified hyper-parameters by the command:

    python train.py -d=ifashion -l=5 -e=50 -g=0. 
    
  4. During the training, you can monitor the training loss and the evaluation performance by Tensorboard. You can get into ./logs to track the curves of your training and evaluation with the following command:

    tensorboard --host="your host ip" --logdir=./
    
  5. The performance of the model is saved in ./performance. You can get into the folder and check the detailed training process of any finished experiments (Compared with the tensorboard log save in ./logs, it is just the txt-version human-readable training log). To quickly check the results for all implemented experiments, you can also print the results of all experiments in a table format on the terminal screen by running:

    python get_all_the_res.py
    
  6. The best model will be saved in ./model_saves.

You might also like...
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

A MNIST-like fashion product database. Benchmark
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Owner
Yujuan Ding
Yujuan Ding
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 1, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 9, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022