PS-SC GAN
This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction constraints) introduced in the paper Where and What? Examining Interpretable Disentangled Representations. The code for computing the TPL for model checkpoints from disentanglemen_lib can be found in this repository.
Abstract
Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.
Requirements
- Python == 3.7.2
- Numpy == 1.19.1
- TensorFlow == 1.15.0
- This code is based on StyleGAN2 which relies on custom TensorFlow ops that are compiled on the fly using NVCC. To test that your NVCC installation is working correctly, run:
nvcc test_nvcc.cu -o test_nvcc -run
| CPU says hello.
| GPU says hello.
Preparing datasets
CelebA. To prepare the tfrecord version of CelebA dataset, first download the original aligned-and-cropped version from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, then use the following code to create tfrecord dataset:
python dataset_tool.py create_celeba /path/to/new_tfr_dir /path/to/downloaded_celeba_dir
For example, the new_tfr_dir can be: datasets/celeba_tfr.
FFHQ. We use the 512x512 version which can be directly downloaded from the Google Drive link using browser. Or the file can be downloaded using the official script from Flickr-Faces-HQ. Put the xxx.tfrecords file into a two-level directory such as: datasets/ffhq_tfr/xxx.tfrecords.
Other Datasets. The tfrecords versions of DSprites and 3DShapes datasets can be produced
python dataset_tool.py create_subset_from_dsprites_npz /path/to/new_tfr_dir /path/to/dsprites_npz
and
python dataset_tool.py create_subset_from_shape3d /path/to/new_tfr_dir /path/to/shape3d_file
See dataset_tool.py for how other datasets can be produced.
Training
Pretrained models are shared here. To train a model on CelebA with 2 GPUs, run code:
CUDA_VISIBLE_DEVICES=0,1 \
python run_training_ps_sc.py \
--result-dir /path/to/results_ps_sc/celeba \
--data-dir /path/to/datasets \
--dataset celeba_tfr \
--metrics fid1k,tpl_small_0.3 \
--num-gpus 2 \
--mirror-augment True \
--model_type ps_sc_gan \
--C_lambda 0.01 \
--fmap_decay 1 \
--epsilon_loss 3 \
--random_seed 1000 \
--random_eps True \
--latent_type normal \
--batch_size 8 \
--batch_per_gpu 4 \
--n_samples_per 7 \
--return_atts True \
--I_fmap_base 10 \
--G_fmap_base 9 \
--G_nf_scale 6 \
--D_fmap_base 10 \
--fmap_min 64 \
--fmap_max 512 \
--topk_dims_to_show -1 \
--module_list '[Const-512, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-id-2]'
Note that for the dataset directory we need to separate the path into --data-dir and --dataset tags. The --model_type tag only specifies the PS-loss, and we need to use the C_spgroup-n_squares-n_codes in the --module_list tag to specify where to insert the Spatial Constriction modules in the generator. The latent traversals and metrics will be logged in the resulting directory. The --C_lambda tag is the hyper-parameter for modulating the PS-loss.
Evaluation
To evaluate a trained model, we can use the following code:
CUDA_VISIBLE_DEVICES=0 \
python run_metrics.py \
--result-dir /path/to/evaluate_results_dir \
--network /path/to/xxx.pkl \
--metrics fid50k,tpl_large_0.3,ppl2_wend \
--data-dir /path/to/datasets \
--dataset celeba_tfr \
--include_I True \
--mapping_nodup True \
--num-gpus 1
where the --include_I is to indicate the model should be loaded with an inference network, and --mapping_nodup is to indicate that the loaded model has no W space duplication as in stylegan.
Generation
We can generate random images, traversals or gifs based on a pretrained model pkl using the following code:
CUDA_VISIBLE_DEVICES=0 \
python run_generator_ps_sc.py generate-images \
--network /path/to/xxx.pkl \
--seeds 0-10 \
--result-dir /path/to/gen_results_dir
and
CUDA_VISIBLE_DEVICES=0 \
python run_generator_ps_sc.py generate-traversals \
--network /path/to/xxx.pkl \
--seeds 0-10 \
--result-dir /path/to/traversal_results_dir
and
python run_generator_ps_sc.py \
generate-gifs \
--network /path/to/xxx.pkl \
--exist_imgs_dir git_repo/PS-SC/imgs \
--result-dir /path/to/results/gif \
--used_imgs_ls '[sample1.png, sample2.png, sample3.png]' \
--used_semantics_ls '[azimuth, haircolor, smile, gender, main_fringe, left_fringe, age, light_right, light_left, light_vertical, hair_style, clothes_color, saturation, ambient_color, elevation, neck, right_shoulder, left_shoulder, background_1, background_2, background_3, background_4, right_object, left_object]' \
--attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \
--create_new_G True
A gif generation script is provided in the shared pretrained FFHQ folder. The images referred in --used_imgs_ls is provided in the imgs folder in this repository.
Attributes Editing
We can conduct attributes editing with a disentangled model. Currently we only use generated images for this experiment due to the unsatisfactory quality of the real-image projection into disentangled latent codes.
First we need to generate some images and put them into a directory, e.g. /path/to/existing_generated_imgs_dir. Second we need to assign the concepts to meaningful latent dimensions using the --attr2idx_dict tag. For example, if the 23th dimension represents azimuth concept, we add the item {azimuth:23} into the dictionary. Third we need to which images to provide source attributes. We use the --attr_source_dict tag to realize it. Note that there could be multiple dimensions representing a single concept (e.g. in the following example there are 4 dimensions capturing the background information), therefore it is more desirable to ensure the source images provide all these dimensions (attributes) as a whole. A source image can provide multiple attributes. Finally we need to specify the face-source images with --face_source_ls tag. All the face-source and attribute-source images should be located in the --exist_imgs_dir. An example code is as follows:
python run_editing_ps_sc.py \
images-editing \
--network /path/to/xxx.pkl \
--result-dir /path/to/editing_results \
--exist_imgs_dir git_repo/PS-SC/imgs \
--face_source_ls '[sample1.png, sample2.png, sample3.png]' \
--attr_source_dict '{sample1.png: [azimuth, smile]; sample2.png: [age,fringe]; sample3.png: [lighting_right,lighting_left,lighting_vertical]}' \
--attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \
Accumulated Perceptual Distance with 2D Rotation
If a disentangled model has been trained, the accumulated perceptual distance figures shown in Section 3.3 (and Section 8 in the Appendix) can be plotted using the model checkpoint with the following code:
# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
python plot_latent_space.py \
plot-rot-fn \
--network /path/to/xxx.pkl \
--seeds 1-10 \
--latent_pair 19_5 \
--load_gan True \
--result-dir /path/to/acc_results/rot_19_5
The 2D latent traversal grid can be presented with code:
# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
python plot_latent_space.py \
generate-grids \
--network /path/to/xxx.pkl \
--seeds 1-10 \
--latent_pair 19_5 \
--load_gan True \
--result-dir /path/to/acc_results/grid_19_5
Citation
@inproceedings{Xinqi_cvpr21,
author={Xinqi Zhu and Chang Xu and Dacheng Tao},
title={Where and What? Examining Interpretable Disentangled Representations},
booktitle={CVPR},
year={2021}
}