35 Repositories
Python SOFT Libraries
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed
Learning to compose soft prompts for compositional zero-shot learning.
Compositional Soft Prompting (CSP) Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositional
Kglab - an abstraction layer in Python for building knowledge graphs
Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries โ atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, pyarrow, etc.
Decoupled Smoothing in Probabilistic Soft Logic
Decoupled Smoothing in Probabilistic Soft Logic Experiments for "Decoupled Smoothing in Probabilistic Soft Logic". Probabilistic Soft Logic Probabilis
Differentiable Simulation of Soft Multi-body Systems
Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples
SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.
Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E
Multi-task Multi-agent Soft Actor Critic for SMAC
Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.
Computational Design and Dynamics of Soft Systems ยท This is a repository that contains the source code for generating the lecture notes, handouts, exe
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.
This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement
Tensorflow implementation of soft-attention mechanism for video caption generation.
SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio
A web interface for a soft serve Git server.
Soft Serve monitor Soft Sevre is a very nice git server. It offers a really nice TUI to browse the repositories on the server. Unfortunately, it does
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.
ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie
Implementation of parameterized soft-exponential activation function.
Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are
A powerful annex BUBT, BUBT Soft, and BUBT website scraping script.
Annex Bubt Scraping Script I think this is the first public repository that provides free annex-BUBT, BUBT-Soft, and BUBT website scraping API script
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune
An 16kHz implementation of HiFi-GAN for soft-vc.
HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa
Residual Pathway Priors for Soft Equivariance Constraints
Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.
Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"
This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight
SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia
Permute Me Softly: Learning Soft Permutations for Graph Representations
Permute Me Softly: Learning Soft Permutations for Graph Representations
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"
Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published
This repository contains the code and models for the following paper.
DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"
DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. ๐ฅ
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA
Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.
Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"
Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.
PAWS-TF ๐พ Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)
Bucatini: a soft PIPE PHY for FPGA SerDes
Bucatini: a soft PIPE PHY for FPGA SerDes Bucatini is a noodly gateware layer capable of transforming an FPGA SerDes into a PIPE PHY, allowing you to
Proto-RL: Reinforcement Learning with Prototypical Representations
Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto
Dogs classification with Deep Metric Learning using some popular losses
Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo