1112 Repositories
Python Transformers-for-NLP-2nd-Edition Libraries
Sequence model architectures from scratch in PyTorch
This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.
Deep Learning for Natural Language Processing - Lectures 2021
This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
Python code for "Machine learning: a probabilistic perspective" (2nd edition)
Jina allows you to build deep learning-powered search-as-a-service in just minutes
Cloud-native neural search framework for any kind of data
In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.
End to End Automatic Speech Recognition In this repository, I have developed an end to end Automatic speech recognition project. I have developed the
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.
Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen
Markup is an online annotation tool that can be used to transform unstructured documents into structured formats for NLP and ML tasks, such as named-entity recognition. Markup learns as you annotate in order to predict and suggest complex annotations. Markup also provides integrated access to existing and custom ontologies, enabling the prediction and suggestion of ontology mappings based on the text you're annotating.
Markup is an online annotation tool that can be used to transform unstructured documents into structured formats for NLP and ML tasks, such as named-entity recognition. Markup learns as you annotate in order to predict and suggest complex annotations. Markup also provides integrated access to existing and custom ontologies, enabling the prediction and suggestion of ontology mappings based on the text you're annotating.
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning
Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.
Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl
easySpeech is an open-source Python wrapper for google speech to text API that doesn't require PyAudio(So you especially windows user don't have to deal with the errors while installing PyAudio) and also works with hugging face transformers
easySpeech easySpeech is an open source python wrapper for google speech to text api that doesn't require PyAaudio(So you specially windows user don't
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.
CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"
RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta
2021海华AI挑战赛·中文阅读理解·技术组·第三名
文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page
A Neural Language Style Transfer framework to transfer natural language text smoothly between fine-grained language styles like formal/casual, active/passive, and many more. Created by Prithiviraj Damodaran. Open to pull requests and other forms of collaboration.
Styleformer A Neural Language Style Transfer framework to transfer natural language text smoothly between fine-grained language styles like formal/cas
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".
Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers
Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.
Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)
Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.
Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By
CATs: Semantic Correspondence with Transformers
CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time.
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch
Official repository for "Intriguing Properties of Vision Transformers" (2021)
Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .
🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.
Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut
Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."
Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models
SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-driven approaches built around these algorithms enable the simplification of creating faster and smaller models for the ML performance community at large.
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.
Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"
MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.
IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot
Medical Image Segmentation using Squeeze-and-Expansion Transformers
Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im
Localization of thoracic abnormalities model based on VinBigData (top 1%)
Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr
Contains code for the paper "Vision Transformers are Robust Learners".
Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3
Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale
XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch
This repository contains PyTorch code for Robust Vision Transformers.
This repository contains PyTorch code for Robust Vision Transformers.
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining
MILES is a multilingual text simplifier inspired by LSBert - A BERT-based lexical simplification approach proposed in 2018. Unlike LSBert, MILES uses the bert-base-multilingual-uncased model, as well as simple language-agnostic approaches to complex word identification (CWI) and candidate ranking.
MILES Multilingual Lexical Simplifier Explore the docs » Read LSBert Paper · Report Bug · Request Feature About The Project MILES is a multilingual te
TrackFormer: Multi-Object Tracking with Transformers
TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi
Exploring whether attention is necessary for vision transformers
Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)
R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement
Reformer, the efficient Transformer, in Pytorch
Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH
Google AI 2018 BERT pytorch implementation
BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f
jiant is an NLP toolkit
jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu
Pytorch NLP library based on FastAI
Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick
Interpretable Models for NLP using PyTorch
This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT
keras implement of transformers for humans
keras implement of transformers for humans
An easier way to build neural search on the cloud
Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the efficient patterns to build the system by parts, or chaining them into a Flow for an end-to-end experience.
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games
Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)
This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
COVID-19 Related NLP Papers
COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe
Geometry-Free View Synthesis: Transformers and no 3D Priors
Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall
OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.
An Explainable Leaderboard for NLP
ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.
End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th
Generate indoor scenes with Transformers
SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the
SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr
CoaT: Co-Scale Conv-Attentional Image Transformers
CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co
SpikeX - SpaCy Pipes for Knowledge Extraction
SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`
Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c
VideoGPT: Video Generation using VQ-VAE and Transformers
VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.
GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021
skweak: A software toolkit for weak supervision applied to NLP tasks
Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021
Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.
japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing
FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP only focuses on adavanced models and dataset, while FedML supports various federated optimizers (e.g., FedAvg) and platforms (Distributed Computing, IoT/Mobile, Standalone).
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow
Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t
nlp基础任务
NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │ ├── __init__.py │ ├── base_data_process.
Tool which allow you to detect and translate text.
Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr
Awesome-NLP-Research (ANLP)
Awesome-NLP-Research (ANLP)
PRTR: Pose Recognition with Cascade Transformers
PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo
Changing the Mind of Transformers for Topically-Controllable Language Generation
We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t
A fast and easy implementation of Transformer with PyTorch.
FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which
中文空间语义理解评测
中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa
Python bindings to libpostal for fast international address parsing/normalization
pypostal These are the official Python bindings to https://github.com/openvenues/libpostal, a fast statistical parser/normalizer for street addresses
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper
TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".
Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"
Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"
pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib
Implementation of various Vision Transformers I found interesting
Implementation of various Vision Transformers I found interesting
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021
LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami