Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Overview

🌳 Fingerprinting Fine-tuned Language Models in the wild

This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

Clone the repo

git clone https://github.com/LCS2-IIITD/ACL-FFLM.git
pip3 install -r requirements.txt 

Dataset

The dataset includes both organic and synthetic text.

  • Synthetic -

    Collected from posts of r/SubSimulatorGPT2. Each user on the subreddit is a GPT2 small (345 MB) bot that is fine-tuned on 500k posts and comments from a particular subreddit (e.g., r/askmen, r/askreddit,r/askwomen). The bots generate posts on r/SubSimulatorGPT2, starting off with the main post followed by comments (and replies) from other bots. The bots also interact with each other by using the synthetic text in the preceding comment/reply as their prompt. In total, the sub-reddit contains 401,214 comments posted between June 2019 and January 2020 by 108 fine-tuned GPT2 LMs (or class).

  • Organic -

    Collected from comments of 108 subreddits the GPT2 bots have been fine-tuned upon. We randomly collected about 2000 comments between the dates of June 2019 - Jan 2020.

The complete dataset is available here. Download the dataset as follows -

  1. Download the 2 folders organic and synthetic, containing the comments from individual classes.
  2. Store them in the data folder in the following format.
data
├── organic
├── synthetic
└── authors.csv

Note -
For the below TL;DR run you also need to download dataset.json and dataset.pkl files which contain pre-processed data.
Organize them in the dataset/synthetic folder as follows -

dataset
├── organic
├── synthetic
  ├── splits (Folder already present)
    ├── 6 (Folder already present)
      └── 108_800_100_200_dataset.json (File already present)
  ├── dataset.json (to be added via drive link)
  └── dataset.pkl (to be added via drive link)
└── authors.csv (File already present)

108_800_100_200_dataset.json is a custom dataset which contains the comment ID's, the labels and their separation into train, test and validation splits.
Upon running the models, the comments for each split are fetched from the dataset.json using the comment ID's in the 108_800_100_200_dataset.json file .

Running the code

TL;DR

You can skip the pre-processing and the Create Splits if you want to run the code on some custom datasets available in the dataset/synthetic....splits folder. Make sure to follow the instructions mentioned in the Note of the Dataset section for the setting up the dataset folders.

Pre-process the dataset

First, we pre-process the complete dataset using the data present in the folder create-splits. Select the type of data (organic/synthetic) you want to pre-process using the parameter synthetic in the file. By deafult the parameter is set for synthetic data i.e True. This would create a pre-processed dataset.json and dataset.pkl files in the dataset/[organic OR synthetic] folder.

Create Train, Test and Validation Splits

We create splits of train, test and validation data. The parameters such as min length of sentences (default 6), lowercase sentences, size of train (max and default 800/class), validation (max and default 100/class) and test (max and default 200/class),number of classes (max and default 108) can be set internally in the create_splits.py in the splits folder under the commented PARAMETERS Section.

cd create-splits.py
python3 create_splits.py

This creates a folder in the folder dataset/synthetic/splits/[min_len_of_sentence/min_nf_tokens = 6]/. The train, validation and test datasets are all stored in the same file with the filename [#CLASSES]_[#TRAIN_SET_SIZE]_[#VAL_SET_SIZE]_[#TEST_SET_SIZE]_dataset.json like 108_800_100_200_dataset.json.

Running the model

Now fix the same parameters in the seq_classification.py file. To train and test the best model (Fine-tuned GPT2/ RoBERTa) -

cd models/generate-embed/ft/
python3 seq_classification.py 

A results folder will be generated which will contain the results of each epoch.

Note -
For the other models - pretrained and writeprints, first generate the embeddings using the files in the folders models/generate-embed/[pre-trained or writeprints]. The generated embeddings are stored in the results/generate-embed folder. Then, use the script in the models/classifiers/[pre-trained or writeprints] to train sklearn classifiers on generated embeddings. The final results will be in the results/classifiers/[pre-trained or writeprints] folder.

👪 Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. For any detailed clarifications/issues, please email to nirav17072[at]iiitd[dot]ac[dot]in .

⚖️ License

MIT

You might also like...
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

A Neural Language Style Transfer framework to transfer natural language text smoothly between fine-grained language styles like formal/casual, active/passive, and many more. Created by Prithiviraj Damodaran. Open to pull requests and other forms of collaboration.
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

PocketSphinx 5prealpha This is PocketSphinx, one of Carnegie Mellon University's open source large vocabulary, speaker-independent continuous speech r

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Owner
LCS2-IIITDelhi
Laboratory for Computation Social Systems (LCS2) is a research group led by Dr. Tanmoy Chakraborty and Dr. Md. Shad Akhtar at IIIT-D
LCS2-IIITDelhi
null 189 Jan 2, 2023
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

null 14 Jan 3, 2023
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022