16 Repositories
Python comet-deepspeed Libraries
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃
This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor
A faster copy of nell's comet nuker
Astro a faster copy of nell's comet nuker also nell uses external libraries like it's cocaine man never learned to use ansi color codes (ily nell) (On
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET
Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡
Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"
To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts
Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.
Simple and efficient RevNet-Library with DeepSpeed support
RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory
Ongoing research training transformer language models at scale, including: BERT & GPT-2
What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed
GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3
Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs
(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.
GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun