39 Repositories
Python dueling-dqn Libraries
Dueling Platform for Competitive Programming. Learn through Games.
CP-Dueling Dueling Platform for Competitive Programming. Learn through Games. Setting Up Minimum Python version needed = 3.9.9 Install Virtualenv and
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach
Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow
Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo
TensorFlow implementation of Deep Reinforcement Learning papers
Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A
Deeprl - Standard DQN and dueling network for simple games
DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo
Tianshou - An elegant PyTorch deep reinforcement learning library.
Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
ChainerRL is a deep reinforcement learning library built on top of Chainer.
ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work
Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper
Rainbow DQN implementation accompanying the paper "Fast and Data-Efficient Training of Rainbow" which reaches 205.7 median HNS after 10M frames. 🌈
Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).
Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈
Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...
Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported
This is a clean and robust Pytorch implementation of DQN and Double DQN.
DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression
Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx
Deep Q-network learning to play flappybird.
AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces
Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.
BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is
A scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.
PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial PyTorch P
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning
Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp
Deep Reinforcement Learning with pytorch & visdom
Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A
A Deep Reinforcement Learning Framework for Stock Market Trading
DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap
A working implementation of the Categorical DQN (Distributional RL).
Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari
A very short and easy implementation of Quantile Regression DQN
Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch
Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"
Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi
Paddle-RLBooks is a reinforcement learning code study guide based on pure PaddlePaddle.
Paddle-RLBooks Welcome to Paddle-RLBooks which is a reinforcement learning code study guide based on pure PaddlePaddle. 欢迎来到Paddle-RLBooks,该仓库主要是针对强化学
A collection of various RL algorithms like policy gradients, DQN and PPO. The goal of this repo will be to make it a go-to resource for learning about RL. How to visualize, debug and solve RL problems. I've additionally included playground.py for learning more about OpenAI gym, etc.
Reinforcement Learning (PyTorch) 🤖 + 🍰 = ❤️ This repo will contain PyTorch implementation of various fundamental RL algorithms. It's aimed at making
Reinforcement Learning for finance
Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina
Spatial Action Maps for Mobile Manipulation (RSS 2020)
spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)
spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua
ChainerRL is a deep reinforcement learning library built on top of Chainer.
ChainerRL ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Ch
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.
TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning. TF-Agents makes implementing, de
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
This is the code of using DQN to play Sekiro .
Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen
Modular Deep Reinforcement Learning framework in PyTorch. Companion library of the book "Foundations of Deep Reinforcement Learning".
SLM Lab Modular Deep Reinforcement Learning framework in PyTorch. Documentation: https://slm-lab.gitbook.io/slm-lab/ BeamRider Breakout KungFuMaster M