14 Repositories
Python mcmc Libraries
This repository provides some codes to demonstrate several variants of Markov-Chain-Monte-Carlo (MCMC) Algorithms.
Demo-of-MCMC These files are based on the class materials of AEROSP 567 taught by Prof. Alex Gorodetsky at University of Michigan. Author: Hung-Hsiang
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference, with the design goal of unifying the automation (of Monte Carlo simulations), user-friendliness (of the library), accessibility (from multiple programming environments), high-performance (at runtime), and scalability (across many parallel processors).
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice
Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to
Application of the L2HMC algorithm to simulations in lattice QCD.
l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of
zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl
Decipher using Markov Chain Monte Carlo
Decipher using Markov Chain Monte Carlo
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms
AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"
Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
The Python ensemble sampling toolkit for affine-invariant MCMC
emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense