912 Repositories
Python mesh-transformer-jax Libraries
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans
Explainability for Vision Transformers (in PyTorch)
Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.
SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。
mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch
Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi
Pytorch implementation of PCT: Point Cloud Transformer
PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.
Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf
NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.
FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori
PyTorch implementation of "Conformer: Convolution-augmented Transformer for Speech Recognition" (INTERSPEECH 2020)
PyTorch implementation of Conformer: Convolution-augmented Transformer for Speech Recognition. Transformer models are good at capturing content-based
Graph neural network message passing reframed as a Transformer with local attention
Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more
JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops