Face recognition. Redefined.

Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


Logo

FaceFinder

Use a powerful CNN to identify faces in images!

TABLE OF CONTENTS
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact
  8. Acknowledgements

About The Project

screenshot

There is lots of face recognition software out there on github, but most of it focuses on speed over accuracy and uses models such as 'hog'. However, FaceFinder is one of the most powerful face recognition programs which uses a very large CNN to make accurate predictions.

Here's why:

  • Several modern technologies make use of face recognition and its importance in the world is constantly increasing.
  • You shouldn't have to train a full neural net of your own every time you want to perform face recognition.
  • FaceFinder contains code which runs approximately 3.7 times faster than average.

If you're making an app of your own and want it to perform face recognition, this is your go-to option.

A list of commonly used resources that I find helpful are listed in the acknowledgements.

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

  • Latest versions of pip and setuptools
    pip install --upgrade pip setuptools
  • Conda
    pip install conda
  • Dlib
    python -m conda install dlib
  • Required packages
    pip install -r requirements.txt

Installation

  1. Ensure you're in your home directory:

    cd ~

    When you clone the repository it should show up as a subfolder in your home folder. You can change its location whenever you want.

  2. Clone the repo:

    git clone https://github.com/BleepLogger/FaceFinder

    Clone the repository by its URL.

  3. Navigate to cloned repository:

    cd FaceFinder

    Commands that you run should be run within the cloned repository.

  4. To run the program, execute tasks.py with command line arguments:

    python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

    Replace the and with the real paths. They're just placeholders.

Usage

To run it from the command line, you will need to pass two arguments.

python Scripts/tasks.py --data-dir '<data folder path>' --input_image '<path to image>'

Replace the and with the real paths.

This program needs one directory containing different images labelled with whose face is present in the image. And then, you need an input image which will be classified.

So if you want to check whether an image is an image of your mom or your dad, then this is how you could do it:

  1. Create a directory called dataset/ in the FaceFinder directory in ~.
  2. Create two subdirectories, dataset/mom and dataset/dad.
  3. Add images of your mother to the mom subdir and your father to your dad subdir.
  4. Click an image of either your mom or your dad, the one you want to classify. Title it 2bclassified.jpg and put it in the FaceFinder directory.
  5. Run this command:
    python Scripts/tasks.py --data-dir 'dataset/' --input_image '2bclassified.jpg'

Then, after about 20 minutes of processing (6-7 if you have a GPU), a window will open up displaying your image, with a box highlighting the detected face and a box of text saying either "Mom" or saying "Dad".

You will have to install dlib from source if you want your GPU to be utilized. Look up the instructions to do that.

Roadmap

See the open issues for a list of proposed features (and known issues).

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Kanav Bhasin - @kanav_bhasin - [email protected]

Project Link: https://github.com/BleepLogger/FaceFinder


# Thank you!
You might also like...
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

A PyTorch Toolbox for Face Recognition
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

MagFace: A Universal Representation for Face Recognition and Quality Assessment
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Face Detection & Age Gender & Expression & Recognition
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Face Transformer for Recognition
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Owner
BleepLogger
App/system developer specializing in C, Python, and JavaScript. Writes unreadable but very fast code. Skills include AI/ML, Web Scraping, and The Cloud.
BleepLogger
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

null 52 Dec 30, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

null 52 Nov 9, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

VĂ­tor Albiero 519 Dec 29, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 8, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection ?? Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 3, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 2, 2023
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022