Causal-Adversarial-Instruments - PyTorch Implementation for Developing Library of Investigating Adversarial Examples on A Causal View by Instruments

Overview

PyTorch Git

Causal-Adversarial-Instruments

Generic badge Generic badge Generic badge License: MIT

This is a PyTorch Implementation code for developing super fast adversarial training. This code is combined with below state-of-the-art technologies for accelerating adversarial attacks and defenses with Deep Neural Networks on Volta GPU architecture.

  • Distributed Data Parallel [link]
  • Channel Last Memory Format [link]
  • Mixed Precision Training [link]
  • Mixed Precision + Adversarial Attack (based on torchattacks [link])
  • Faster Adversarial Training for Large Dataset [link]
  • Fast Forward Computer Vision (FFCV) [link]

Citation

If you find this software helpful, please cite it as:

@software{Causal_AI_2022,
  author = {Byung-Kwan Lee, Junho Kim},
  title = {Causal-Adversarial-Instruments},
  url = {https://github.com/ByungKwanLee/Causal-Adversarial-Instruments},
  version = {0.1},
  year = {2022}
}

Library for Fast Adversarial Attacks

This library is developed based on the well-known package of torchattacks [link] due to its simple scalability.

Under Developement (Current Available Attacks Below)

  • Fast Gradient Sign Method (FGSM)
  • Projected Gradient Descent (PGD)

Environment Setting

Please check below settings to successfully run this code. If not, follow step by step during filling the checklist in.

  • To utilize FFCV [link], you should install it on conda virtual environment. I use python version 3.8, pytorch 1.7.1, torchvision 0.8.2, and cuda 10.1. For more different version, you can refer to PyTorch official site [link].

conda create -y -n ffcv python=3.8 cupy pkg-config compilers libjpeg-turbo opencv pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 numba -c pytorch -c conda-forge

  • Activate the created environment by conda

conda activate ffcv

  • And, it would be better to install cudnn to more accelerate GPU. (Optional)

conda install cudnn -c conda-forge

  • To install FFCV, you should download it in pip and install torchattacks [link] to run adversarial attack.

pip install ffcv torchattacks==3.1.0

  • To guarantee the execution of this code, please additionally install library in requirements.txt (matplotlib, tqdm)

pip install -r requirements.txt


Available Datasets


Available Baseline Models


How to run

After making completion of environment settings, then you can follow how to run below.


  • First, run fast_dataset_converter.py to generate dataset with .betson extension, instead of using original dataset [FFCV].
# Future import build
from __future__ import print_function

# Import built-in module
import os
import argparse

# fetch args
parser = argparse.ArgumentParser()

# parameter
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--gpu', default='0', type=str)
args = parser.parse_args()

# GPU configurations
os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu

# init fast dataloader
from utils.fast_data_utils import save_data_for_beton
save_data_for_beton(dataset=args.dataset)

  • Second, run fast_pretrain_standard.py(Standard Training) or fast_pretrain_adv.py (Adversarial Training)
# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=50, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=512, type=float)
parser.add_argument('--test_batch_size', default=128, type=float)
parser.add_argument('--epoch', default=100, type=int)

or

# model parameter
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='imagenet', type=str)
parser.add_argument('--network', default='resnet', type=str)
parser.add_argument('--depth', default=18, type=int)
parser.add_argument('--gpu', default='0,1,2,3,4', type=str)

# learning parameter
parser.add_argument('--learning_rate', default=0.1, type=float)
parser.add_argument('--weight_decay', default=0.0002, type=float)
parser.add_argument('--batch_size', default=1024, type=float)
parser.add_argument('--test_batch_size', default=512, type=float)
parser.add_argument('--epoch', default=60, type=int)

# attack parameter
parser.add_argument('--attack', default='pgd', type=str)
parser.add_argument('--eps', default=0.03, type=float)
parser.add_argument('--steps', default=10, type=int)

You might also like...
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

Pre-trained model, code, and materials from the paper
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

A certifiable defense against adversarial examples by training neural networks to be provably robust
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Owner
LBK
Ph.D Candidate, KAIST EE
LBK
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 8, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 132 Nov 22, 2022
Woosung Choi 62 Oct 23, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

null 26 Oct 25, 2022
LBK 29 Nov 4, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 163 Nov 13, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python >= 3.6 p

Renzhe Xu 6 Oct 26, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 205 Nov 15, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

null 52 Nov 19, 2022