Visualization Website by using Dash and Heroku

Overview

Visualization Website by using Dash and Heroku

You can visit the website https://payroll-expense-analysis.herokuapp.com/

In this project, I am interested in studying the top 10 departments with the highest total payroll expense in each county in Massachusetts in 2020. The link to this dashboard is:

Dashboard Description

Users can click on one or multiple counties to study the departments with the highest total payroll expenses in the state of Massachusetts. Moreover, the pie chart would allow us to compare the proportion of total payroll earnings across the selected counties. By using the checkbox interactive element, users could also generate the range of counties they want to study the top 10 departments with the highest payroll expense among the selected counties. Users who are interested in discovering high payroll expense on the department and county level could utilize this dashboard as an initial observation to generate idea for further research directions.

Dashboard elements:

The dropdown box is an interactive element where the users have the option to choose the counties they are interested in. It will generate a bar plot that reflects the sum of total earnings on the Y-axis, the top 10 department names with the highest pay in the county on the x-axis. The check box element creates an interactive platform for users to compare the percentage of total earnings across counties. For example, if we choose Suffolk and Middlesex as the base of our analysis, then we can see that Suffolk is 86.9 percent compared to the sum of Suffolk and Middlesex. If we had chosen all counties, we would be able to see how much funds were dedicated to the city employee payroll in each county across the state of Massachusetts. The check box element also generates a table of the top departments with the most payroll spendings within the selected counties.

Data Sources

The data collected from:

the City of Boston: The City of Boston US geo data: US geo data

The original dataset contained the following columns:

Name: The name of the city employee Department Name: The name of the department the employee work at Title: The title or position the individual has in the respective department Postal: The postal code of where the payroll is expensed

The definition the payroll component rest of the variables is provided by the City of Boston:

Definition

The other dataset we had used is from "http://download.geonames.org/export/zip/US.zip"

This data is a txt. List that contains geographic information of each postal code, including the state, statecode, city, county, longitude, latitude, etc. I transformed this list into a dataset. This dataset would be merged with our payroll 2020 dataset to locate each payroll’s county.

Data Cleaning Process:

The first step is to input the original payroll data and the US geo data from the website. Then, I eliminated the rows in the payroll data where postal code is null. Furthermore, I selected only the department name, total earnings, and the county columns to use as the dashboard data source. In addition. I eliminated the rows that is not within the State of Massachusetts. For the bar plot and table, I sorted the data through grouping the dataset by department name and county and summarizing the total earnings for each respective group. For the pie chart, I will sort the data by grouping the dataset solely by county and summarize the total earnings.

##Additional Comments

It is interesting to discover that the Boston Police Department is the highest across all departments. I think it is worth the future investigation for more detailed understanding of the payroll components.

Payroll-Expense

Owner
YF Liu
YF Liu
A dashboard built using Plotly-Dash for interactive visualization of Dex-connected individuals across the country.

Dashboard For The DexConnect Platform of Dexterity Global Working prototype submission for internship at Dexterity Global Group. Dashboard for real ti

Yashasvi Misra 2 Jun 15, 2021
Regress.me is an easy to use data visualization tool powered by Dash/Plotly.

Regress.me Regress.me is an easy to use data visualization tool powered by Dash/Plotly. Regress.me.-.Google.Chrome.2022-05-10.15-58-59.mp4 Get Started

Amar 14 Jun 24, 2022
This is a super simple visualization toolbox (script) for transformer attention visualization ✌

Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m

Mingyu Wang 2 Jan 12, 2022
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

null 5 May 28, 2022
Yata is a fast, simple and easy Data Visulaization tool, running on python dash

Yata is a fast, simple and easy Data Visulaization tool, running on python dash. The main goal of Yata is to provide a easy way for persons with little programming knowledge to visualize their data easily.

Cybercreek 3 Jun 28, 2021
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 8, 2021
Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 450 Jun 4, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.6k Jun 26, 2022
Custom Plotly Dash components based on Mantine React Components library

Dash Mantine Components Dash Mantine Components is a Dash component library based on Mantine React Components Library. It makes it easier to create go

Snehil Vijay 129 Jun 25, 2022
GD-UltraHack - A Mod Menu for Geometry Dash. Specifically a MegahackV5 clone in Python. Only for Windows

GD UltraHack: The Mod Menu that Nobody asked for. This is a mod menu for the gam

zeo 1 Jan 5, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 3 Feb 16, 2022
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 27 Jun 22, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 9.5k Jun 28, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 8.1k Feb 13, 2021
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 8.1k Feb 18, 2021
Create a visualization for Trump's Tweeted Words Using Python

Data Trump's Tweeted Words This plot illustrates twitter word occurences. We already did the coding I needed for this plot, so I was very inspired to

null 7 Mar 27, 2022
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

null 13 Oct 27, 2021
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.2k Jun 24, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021