Histology images query (unsupervised)

Overview

110-1-NTU-DBME5028-Histology-images-query

Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query-competition/overview

Teem members:
f09921058 陳羿翔, r09942171 黃繼綸

Environment

OS : Ubuntu 16.04
Language: Python37 Torch: 21.08+

Introduction

Processing

image


Model (VAE + BYOL)

image


How to use

Download dataset in Kaggle

https://www.kaggle.com/c/histology-images-query-competition/data

$ kaggle competitions download -c histology-images-query-competition

Download the pretrained models

https://drive.google.com/drive/folders/1u2wWuPfb327AHGi8WRCTMiVxmIRPrUHg?usp=sharing

Training from scratch

$ python train.py -v --eta 10 --save_model_path path/to/save --data path/to/train
  • -v: save vae result
  • --eta: Ltotal = Ltask + \eta * Lreconstruction
  • --lamda: Lconstruction = Lmse + \lamda * Lkl

Testing

$ python inference.py --data path/to/test
You might also like...
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

Owner
null
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 4, 2020
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 5, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 3, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

null 105 Dec 23, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 8, 2023