Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Overview

Reformulation-Aware-Metrics

License made-with-python

Introduction

This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper.

Requirements

  • python 2.7
  • sklearn
  • scipy

Data Preparation

Preprocess two datasets TianGong-SS-FSD and TianGong-Qref into the the following format:

[Reformulation Type][Click List][Usefulness List][Satisfaction Label]
  • Reformulation Type: A (Add), D (Delete), K (Keep), T (Transform or Change), O (Others), F (First Query).
  • Click List: 1 -- Clicked, 0 -- Not Clicked.
  • Usefulness List: Usefulness or Relevance, 4-scale in TianGong-QRef, 5-scale in TianGong-SS-FSD.
  • Satisfaction Label: 5-scale for both datasets.

Then, bootsrap them into N samples and put the bootstapped data (directories) into ./data/bootstrap_fsd and ./data/bootstrap_qref.

Results

The results for each metrics are shown in the following table:

Metric Qref-Spearman Qref-Pearson Qref-MSE FSD-Spearman FSD-Pearson FSD-MSE
RBP 0.4375 0.4180 N/A 0.4898 0.5222 N/A
DCG 0.4434 0.4182 N/A 0.5022 0.5290 N/A
BPM 0.4552 0.3915 N/A 0.5801 0.6052 N/A
RBP sat 0.4389 0.4170 N/A 0.5165 0.5527 N/A
DCG sat 0.4446 0.4166 N/A 0.5047 0.5344 N/A
BPM sat 0.4622 0.3674 N/A 0.5960 0.6029 N/A
rrDBN 0.4123 0.3670 1.1508 0.5908 0.5602 1.0767
rrSDBN 0.4177 0.3713 1.1412 0.5991 0.5703 1.0524
uUBM 0.4812 0.4303 1.0607 0.6242 0.5775 0.8795
uPBM 0.4827 0.4369 1.0524 0.6210 0.5846 0.8644
uSDBN 0.4837 0.4375 1.1443 0.6290 0.6081 0.8840
uDBN 0.4928 0.4458 1.0801 0.6339 0.6207 0.8322

To reproduce the results of traditional metrics such as RBP, DCG and BPM, we recommend you to use this repo: cwl_eval. 🤗

Quick Start

To train RAMs, run the script as follows:

python run.py --click_model DBN \
	--data qref \
	--id 0 \
	--metric_type expected_utility \
	--max_usefulness 3 \
	--k_num 6 \
	--max_dnum 10 \
	--iter_num 10000 \
	--alpha 0.01 \
	--alpha_decay 0.99 \
	--lamda 0.85 \
	--patience 5 \
	--use_knowledge True
  • click_model: options: ['DBN', 'SDBN', 'UBM', 'PBM']
  • data: options: ['fsd', 'qref']
  • metric_type: options: ['expected_utility', 'effort']
  • id: the bootstrapped sample id.
  • k_num: the number of user intent shift type will be considered, should be less than or equal to six.
  • max_dnum: the maximum number of top documents to be considered for a specific query.
  • use_knowledge: whether to use the transition probability from syntactic reformulation types to intent-level ones derived from the TianGong-Qref dataset.

Citation

If you find the resources in this repo useful, please do not save your star and cite our work:

@inproceedings{chen2021incorporating,
  title={Incorporating Query Reformulating Behavior into Web Search Evaluation},
  author={Chen, Jia and Liu, Yiqun and Mao, Jiaxin and Zhang, Fan and Sakai, Tetsuya and Ma, Weizhi and Zhang, Min and Ma, Shaoping},
  booktitle={Proceedings of the 30th ACM International Conference on Information and Knowledge Management},
  year={2021},
  organization={ACM}
}

Contact

If you have any questions, please feel free to contact me via [email protected] or open an issue.

You might also like...
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Owner
xuanyuan14
Jia Chen 陈佳
xuanyuan14
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 5, 2023
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 8, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 5, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022