PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Overview

Contrast to Divide: self-supervised pre-training for learning with noisy labels

This is an official implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels". The code is based on DivideMix implementation.

Results

Following tables summarize main resutls of the paper:

CIFAR-10: CIFAR-10 results

CIFAR-100: CIFAR-100 results

Clothing1M: Clothing1M results

mini-WebVision: mini-WebVision

Running the code

First you need to install dependencies by running pip install -r requirements.txt.

You can download pretrained self-supervised models from Google Drive. Alternatively, you can train them by yourself, using SimCLR implementation. Put them into ./pretrained folder.

Then you can run the code for CIFAR

python3 main_cifar.py --r 0.8 --lambda_u 500 --dataset cifar100 --p_threshold 0.03 --data_path ./cifar-100 --experiment-name simclr_resnet18 --method selfsup --net resnet50

for Clothing1M

python3 main_clothing1M.py --data_path /path/to/clothing1m --experiment-name selfsup --method selfsup --p_threshold 0.7 --warmup 5 --num_epochs 120

or for mini-WebVision

python3 Train_webvision.py --p_threshold 0.03 --num_class 50 --data_path /path/to/webvision --imagenet_data_path /path/to/imagenet --method selfsup```

To run C2D with ELR+ just use the self-suprevised pretrained models with the original code.

License

This project is licensed under the terms of the MIT license.

You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • tabular data/ noisy instances

    tabular data/ noisy instances

    Hi, thanks for sharing your implementation. I have two questions about it:

    1. Does it also work on tabular data?
    2. Is it possible to identify the noisy instances (return the noisy IDs or the clean set)?

    Thanks!

    opened by nazaretl 1
  •  Lambda_u for CIFAR-100 on 40 asym noise

    Lambda_u for CIFAR-100 on 40 asym noise

    Hi, I haven't been able to find which hyper-parameters you use to train on CIFAR-100 with 40% asymmetric noise. Can you please tell me?

    Thank you!

    P.S: Awesome work!

    opened by aldakata 1
  • About the self-supervised model on cifar10

    About the self-supervised model on cifar10

    Hi, I have trained self-supervised model on cifar10 with PreAct-ResNet18 and ResNet18. On the 90% noise rate, I achieve the performance about 93.46 with ResNet18, but get a worse result about 92.8 with PreAct-ResNet18. However, the performance with PreAct-ResNet18 in the paper is 93.57. And the available self-supervised model for cifar10 in Google Drive is ResNet18, I achieve the performance about 93.54 by using this model. I notice that the performance with PreAct-ResNet18 in the paper is actually more similar to ResNet18. Is there any mistake? Or how can I reproduce the performance with PreAct-ResNet18?

    opened by luan-g 0
Owner
null
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 8, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 8, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 7, 2023
Fang Zhonghao 13 Nov 19, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 4, 2023
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 6, 2023
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022