A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

Overview

Awesome-LiDAR-Camera-Calibration

Awesome

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes.

Outline

0. Introduction

For applications such as autonomous driving, robotics, navigation systems, and 3-D scene reconstruction, data of the same scene is often captured using both lidar and camera sensors. To accurately interpret the objects in a scene, it is necessary to fuse the lidar and the camera outputs together. Lidar camera calibration estimates a rigid transformation matrix (extrinsics, rotation+translation, 6 DoF) that establishes the correspondences between the points in the 3-D lidar plane and the pixels in the image plane.

Example

1. Target-based methods

Paper Target Feature Optimization Toolbox Note
Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration), 2004 checkerboard C:Plane (a), L: pts in plane (m) point-to-plane CamLaserCalibraTool CN
Fast Extrinsic Calibration of a Laser Rangefinder to a Camera, 2005 checkerboard C: Plane (a), L: Plane (m) plane(n/d) correspondence, point-to-plane LCCT *
Extrinsic calibration of a 3D laser scanner and an omnidirectional camera, 2010 checkerboard C: plane (a), L: pts in plane (m) point-to-plane cam_lidar_calib *
LiDAR-Camera Calibration using 3D-3D Point correspondences, 2017 cardboard + ArUco C: 3D corners (a), L: 3D corners (m) ICP lidar_camera_calibration *
Reflectance Intensity Assisted Automatic and Accurate Extrinsic Calibration of 3D LiDAR and Panoramic Camera Using a Printed Chessboard, 2017 checkerboard C: 2D corners (a), L: 3D corners (a) PnP, angle difference ILCC *
Extrinsic Calibration of Lidar and Camera with Polygon, 2018 regular cardboard C: 2D edge, corners (a), L: 3D edge, pts in plane (a) point-to-line, point-inside-polygon ram-lab/plycal *
Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using Line and Plane Correspondences, 2018 checkerboard C: 3D edge, plane(a), L: 3D edge, pts in plane (a) direcion/normal, point-to-line, point-to-plane Matlab LiDAR Toolbox *
Improvements to Target-Based 3D LiDAR to Camera Calibration, 2020 cardboard with ArUco C: 2d corners (a), L: 3D corners (a) PnP, IOU github *
ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems, 2020 checkerboard C: 2D corners (a), L: 3D corners (a) PnP ACSC *
Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups, 2021 cardboard with circle & Aruco C: 3D points (a), L: 3D points (a) ICP velo2cam_ calibration *

C: camera, L: LiDAR, a: automaic, m: manual

2. Targetless methods

2.1. Motion-based methods

Paper Feature Optimization Toolbox Note
LiDAR and Camera Calibration Using Motions Estimated by Sensor Fusion Odometry, 2018 C: motion (ICP), L: motion (VO) hand-eye calibration * *

2.2. Scene-based methods

2.2.1. Traditional methods

Paper Feature Optimization Toolbox Note
Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information, 2012 C:grayscale, L: reflectivity mutual information, BB steepest gradient ascent Extrinsic Calib *
Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information, 2013 C:grayscale, L: reflectivity, noraml normalized MI, particle swarm * *
Automatic Online Calibration of Cameras and Lasers, 2013 C: Canny edge, L: depth-discontinuous edge correlation, grid search * *
SOIC: Semantic Online Initialization and Calibration for LiDAR and Camera, 2020 semantic centroid PnP * *
A Low-cost and Accurate Lidar-assisted Visual SLAM System, 2021 C: edge(grayscale), L: edge (reflectivity, depth projection) ICP, coordinate descent algorithms CamVox *
Pixel-level Extrinsic Self Calibration of High Resolution LiDAR and Camera in Targetless Environments,2021 C:Canny edge(grayscale), L: depth-continuous edge point-to-line, Gaussian-Newton livox_camera_calib *
CRLF: Automatic Calibration and Refinement based on Line Feature for LiDAR and Camera in Road Scenes, 2021 C:straight line, L: straight line perspective3-lines (P3L) * CN

2.2.2. Deep-learning methods

Pape Toolbox Note
RegNet: Multimodal sensor registration using deep neural networks, 2017,IV regnet *
CalibNet: Geometrically supervised extrinsic calibration using 3d spatial transformer networks,2018,IROS CalibNet *

3. Other toolboxes

Toolbox Introduction Note
Apollo sensor calibration tools targetless method, no source code CN
Autoware camera lidar calibrator pick points mannually, PnP *
Autoware calibration camera lidar checkerboard, similar to LCCT CN
livox_camera_lidar_calibration pick points mannually, PnP *
You might also like...
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is established, which is named opensa (openspectrum analysis).

The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Improving Calibration for Long-Tailed Recognition (CVPR2021)
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Improving Calibration for Long-Tailed Recognition (CVPR2021)
Improving Calibration for Long-Tailed Recognition (CVPR2021)

Improving Calibration for Long-Tailed Recognition (CVPR2021)

Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Comments
  • TierIV calibration tools

    TierIV calibration tools

    (Disclaimer: I am one of the developers)

    In TierIV we are developing calibration tools for autonomous driving and as part of those we developed a target-based camera-lidar method and a UI-based manual calibration tool. Although they do not introduce much novelty, they provide quite good results and as we keep developing new calibration tools for different use-cases, we plan to support the repository for a long period of time.

    I came to see this curated list of methods, tools, and papers while doing my literature review so I would love it if our software could be included here !

    Link

    Best regards,

    Kenzo

    opened by knzo25 1
Owner
null
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

null 57 Nov 14, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Su Pang 254 Dec 16, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 4, 2023
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

null 41 Apr 28, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022