An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Overview

Agar.io_Q-Learning_AI

An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions.

An image of the circle categorisation function in action. Food blobs are outlined in blue, edible cells in green and dangerous cells in red according to where our program detects them. Screen edges mess that up a bit. The agents action at this moment is labelled with the green arrow.

Circle Detection Diagram drawio

States are calculated using the shortest euclidian distance to each of the three circle types: food, edible cells and dangerous cells. These distances are measured and discretized according to which interval they fall within. The rulers in this image are to scale.

State Diagram

Currently the agent can't press any keyboard buttons, only move around using the mouse. It could be added without too much hassle, but it would require a rework of some aspects of the code and a ton training, which already takes ages. The q-learning part could also do with a proper implementation of stochastic q-learning instead of our generic iterative q-learning, if I knew how to do it. I look forward to learning that at a later point.

Feel free to ask any questions about the code or the project. I hope you enjoy!

Average score

Time alive

Mean score gain per second

The humans in the experiment were subject to the same move set as the bots and agents, so only mouse movement.

You might also like...
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions.
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

Where2Act: From Pixels to Actions for Articulated 3D Objects
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Owner
null
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 5, 2023
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 8, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 6, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 2, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.

lan.nguyen2k 77 Jan 3, 2023