Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Overview

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival

Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Survival Project!

This project aims to provide methods to automatically segment the primary gross target volume on fluoro-deoxyglucose (FDG)-PET and Computed Tomography (CT) images and prediction of progression-free survival in H&N oropharyngeal cancer. We participated to the HEad and neCK TumOR Segmentation and Prediction of Patient Outcome Challenge 2021 (HECKTOR 2021) which creates a platform for comparing segmentation methods and predictions of patient survival.

For the segmentation task, we proposed a new network based on an encoder/decoder architecture with attention mechanisms and full inter- and intra-skip connections and attention mechanisms inspired from UNet3+ to take advantage of low-level and high-level semantics at full scales. Additionally, we used Conditional Random Fields (CRF) as a post-processing step to refine the predicted segmentation maps.

For prediction of patient progression free survival, we extracted relevant clinical, radiomic, and deep learning features using Lasso regression. Our best performing model was a Cox proportional hazard regression.

Installation

  1. Clone the repo
    git clone https://github.com/EmmanuelleB985/Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival.git
  2. Install the packages
    pip install requirements.txt

Usage

  • For segmentation task
   cd src/Segmentation_Task

To train the model

   python main.py
  • For Survival task
   cd src/Survival_Task

To train and evaluate the models, run the notebook Survival.ipynb

License

Distributed under the MIT License. See LICENSE for more information.

You might also like...
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

 WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

This repository contains a PyTorch implementation of
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

Deep Learning Head Pose Estimation using PyTorch.
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Owner
null
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction ?? Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

null 1 Jan 10, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

null 104 Dec 8, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022