profile tools for pytorch nn models

Overview

nnprof

Introduction

nnprof is a profile tool for pytorch neural networks.

Features

  • multi profile mode: nnprof support 4 profile mode: Layer level, Operation level, Mixed level, Layer Tree level. Please check below for detail usage.
  • time and memory profile: nnprof support both time and memory profile now. But since memory profile is first supported in pytorch 1.6, please use torch version >= 1.6 for memory profile.
  • support sorted by given key and show profile percent: user could print table with percentage and sorted profile info using a given key, which is really helpful for optimiziing neural network.

Requirements

  • Python >= 3.6
  • PyTorch
  • Numpy

Get Started

install nnprof

  • pip install:
pip install nnprof
  • from source:
python -m pip install 'git+https://github.com/FateScript/nnprof.git'

# or install after clone this repo
git clone https://github.com/FateScript/nnprof.git
pip install -e nnprof

use nnprf

from nnprof import profile, ProfileMode
import torch
import torchvision

model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])

# mode could be anyone in LAYER, OP, MIXED, LAYER_TREE
mode = ProfileMode.LAYER

with profile(model, mode=mode) as prof:
    y = model(x)

print(prof.table(average=False, sorted_by="cpu_time"))
# table could be sorted by presented header.

Part of presented table looks like table below, Note that they are sorted by cpu_time.

╒══════════════════════╤═══════════════════╤═══════════════════╤════════╕
│ name                 │ self_cpu_time     │ cpu_time          │   hits │
╞══════════════════════╪═══════════════════╪═══════════════════╪════════╡
│ AlexNet.features.0   │ 19.114ms (34.77%) │ 76.383ms (45.65%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.3   │ 5.148ms (9.37%)   │ 20.576ms (12.30%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.8   │ 4.839ms (8.80%)   │ 19.336ms (11.56%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.6   │ 4.162ms (7.57%)   │ 16.632ms (9.94%)  │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.10  │ 2.705ms (4.92%)   │ 10.713ms (6.40%)  │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤

You are welcomed to try diffierent profile mode and more table format.

Contribution

Any issues and pull requests are welcomed.

Acknowledgement

Some thoughts of nnprof are inspired by torchprof and torch.autograd.profile . Many thanks to the authors.

You might also like...
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models. 基于BERT的文本纠错模型,使用PyTorch实现。

PyTorch impelementations of BERT-based Spelling Error Correction Models

PyTorch impelementations of BERT-based Spelling Error Correction Models

PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

 Anuvada: Interpretable Models for NLP using PyTorch
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Owner
Feng Wang
Cleaner @ Megvii
Feng Wang
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator ?? This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 7, 2023
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 2, 2023
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

?? The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 2, 2023
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

EleutherAI 3.1k Jan 8, 2023
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 2, 2023
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022