PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Overview

Feature_CRF_AE

Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging:

@inproceedings{zhou-etal-2022-Bridging,
  title     = {Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging},
  author    = {Zhou, houquan and Li, yang and Li, Zhenghua and Zhang Min},
  booktitle = {Findings of ACL},
  year      = {2022},
  url       = {?},
  pages     = {?--?}
}

Please concact Jacob_Zhou \at outlook.com if you have any questions.

Contents

Installation

Feature_CRF_AE can be installing from source:

$ git clone https://github.com/Jacob-Zhou/FeatureCRFAE && cd FeatureCRFAE
$ bash scripts/setup.sh

The following requirements will be installed in scripts/setup.sh:

  • python: 3.7
  • allennlp: 1.2.2
  • pytorch: 1.6.0
  • transformers: 3.5.1
  • h5py: 3.1.0
  • matplotlib: 3.3.1
  • nltk: 3.5
  • numpy: 1.19.1
  • overrides: 3.1.0
  • scikit_learn: 1.0.2
  • seaborn: 0.11.0
  • tqdm: 4.49.0

For WSJ data, we use the ELMo representations of elmo_2x4096_512_2048cnn_2xhighway_5.5B from AllenNLP. For UD data, we use the ELMo representations released by HIT-SCIR.

The corresponding data and ELMo models can be download as follows:

# 1) UD data and ELMo models:
$ bash scripts/prepare_data.sh
# 2) UD data, ELMo models as well as WSJ data 
#    [please replace ~/treebank3/parsed/mrg/wsj/ with your path to LDC99T42]
$ bash scripts/prepare_data.sh ~/treebank3/parsed/mrg/wsj/

Performance

WSJ-All

Seed M-1 1-1 VM
0 84.29 70.03 78.43
1 82.34 64.42 77.27
2 84.68 62.78 77.83
3 82.55 65.00 77.35
4 82.20 66.69 77.33
Avg. 83.21 65.78 77.64
Std. 1.18 2.75 0.49

WSJ-Test

Seed M-1 1-1 VM
0 81.99 64.84 76.86
1 82.52 61.46 76.13
2 82.33 61.15 75.13
3 78.11 58.80 72.94
4 82.05 61.68 76.21
Avg. 81.40 61.59 75.45
Std. 1.85 2.15 1.54

Usage

We give some examples on scripts/examples.sh. Before run the code you should activate the virtual environment by:

$ . scripts/set_environment.sh

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Here are some training examples:

$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae_wsj
$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --ud-mode \
    --ud-feature \
    --ignore-capitalized \
    --language-specific-strip \
    --feat-min-freq 14 \
    --language de \
    --encoder elmo \
    --plm elmo_models/de \
    --train data/ud/de/total.conll \
    --evaluate data/ud/de/total.conll \
    --path save/crf_ae_de

For more instructions on training, please type python -m tagger.cmds.[crf_ae|feature_hmm] train -h.

Alternatively, We provides some equivalent command entry points registered in setup.py: crf-ae and feature-hmm.

$ crf-ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae

Evaluation

$ python -u -m tagger.cmds.crf_ae evaluate \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae

Predict

$ python -u -m tagger.cmds.crf_ae predict \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae \
    --pred save/crf_ae/pred.conll
You might also like...
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

Code for
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Entity Disambiguation as text extraction (ACL 2022)
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

Code for ACL 2021 main conference paper
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

Owner
Jacob Zhou
Jacob Zhou
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

null 14 Jan 3, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

?? Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
null 189 Jan 2, 2023
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

null 2 Feb 3, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

null 10 Jul 1, 2022