How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

Overview

EV-charging-impact

This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach" by Artur Grigorev, Tuo Mao, Adam Berry, Joachim Tan, Loki Purushothaman, Adriana-Simona Mihaita. The paper has been published and presented during the IEEE ITSC 2021 conference. The preprint is available: https://arxiv.org/abs/2110.14064 .

You can find a working queue model in "queue_model.py" file.

This EV charging station queue simulation program reads file "Northern_Sydney_EV_charger_list.csv" and outputs queue simulation results into file "q2080_2016_seq.csv". It relies on multiprocessing package to perform parallel simulation.

Input parameters of the model:

  1. Duration of modeling (day, week, month)
  2. Number of plugs on EV stations
  3. Distribution of time intervals between arrivals
  4. Distribution of charging time: normaly distributed between 20% and 80%.
  5. Max queue size
  6. Power supply at EV charger: KW/h

Model output:

  • (O1) Mean queue length of an EV station [n]'] = HOURQUEUE[i]
  • (O2) Mean waiting time in queue at an EV station [hours]
  • (O3) Mean service time to charge at an EV station [hours]
  • (O4) Total time spent overall at an EV station [hours]
  • (O5) Total energy consumption of an EV station [kWh]
  • (O6) Maximum recorded queue length of an EV station [n]
  • (O7) Maximum waiting time in queue at an EV station [hours]
  • (O8) Maximum time spent overall at an EV station [hours]
  • (O9) Maximal energy consumption of an EV station [kW]
  • Consumed electricity by hour [kWh]
  • Total waiting time (minutes) by hour
  • Overall Mean Service time/day'

queue model

To perform calculations for specific OD traffic flow (2016, OD15, OD30) change the line: DICT['StationFlow'] = float(dt[dt.Name==N]['2016 volume']) at the "Setup" section (to 2016, 15 or 30).

The structure of the framework: framework

The code to produce lineplots is in "lineplots.ipynb":

lineplot

lineplot2

The code to produce supplementary animation is in "anim.ipynb": anim

You might also like...
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

3D Pose Estimation for Vehicles
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled -
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Owner
null
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 4, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

null 33 Dec 1, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

null 44 Jun 27, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022