You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

Related tags

Deep Learning YOHO
Overview

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference frame to gain rotation invariance, the proposed descriptor achieves the rotation invariance by recent technologies of group equivariant feature learning, which brings more robustness to point density and noise. Meanwhile, the descriptor in YOHO also has a rotation equivariant part, which enables us to estimate the registration from just one correspondence hypothesis. Such property reduces the searching space for feasible transformations, thus greatly improves both the accuracy and the efficiency of YOHO. Extensive experiments show that YOHO achieves superior performances with much fewer needed RANSAC iterations on four widely-used datasets, the 3DMatch/3DLoMatch datasets, the ETH dataset and the WHU-TLS dataset.

News

  • 2021.9.1 Paper is accessible on arXiv.paper
  • 2021.8.29 The code of the PointNet backbone YOHO is released, which is poorer but highly generalizable. pn_yoho
  • 2021.7.6 The code of the FCGF backbone YOHO is released. Project page

Performance

Performance

Network Structure

Network

Requirements

Here we offer the FCGF backbone YOHO, so the FCGF requirements need to be met:

  • Ubuntu 14.04 or higher
  • CUDA 11.1 or higher
  • Python v3.7 or higher
  • Pytorch v1.6 or higher
  • MinkowskiEngine v0.5 or higher

Installation

Create the anaconda environment:

conda create -n fcgf_yoho python=3.7
conda activate fcgf_yoho
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch 
#We have checked pytorch1.7.1 and you can get the pytorch from https://pytorch.org/get-started/previous-versions/ accordingly.

#Install MinkowskiEngine, here we offer two ways according to the https://github.com/NVIDIA/MinkowskiEngine.git
(1) pip install git+https://github.com/NVIDIA/MinkowskiEngine.git
(2) #Or use the version we offer.
    cd MinkowskiEngine
    conda install openblas-devel -c anaconda
    export CUDA_HOME=/usr/local/cuda-11.1 #We have checked cuda-11.1.
    python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas
    cd ..

pip install -r requirements.txt

KNN build:

cd knn_search/
export CUDA_HOME=/usr/local/cuda-11.1 #We have checked cuda-11.1.
python setup.py build_ext --inplace
cd ..

Data Preparation

We need the 3DMatch dataset (Train, Test) and the 3DLoMatch dataset (Test).

We offer the origin train dataset containing the point clouds (.ply) and keypoints (.txt, 5000 per point cloud) here TrainData. With which, you can train the YOHO yourself.

We offer the origin test datasets containing the point clouds (.ply) and keypoints (.txt, 5000 per point cloud) here 3dmatch/3dLomatch, ETH and WHU-TLS.

Please place the data to ./data/origin_data for organizing the data structure as:

  • data
    • origin_data
      • 3dmatch
        • sun3d-home_at-home_at_scan1_2013_jan_1
          • Keypoints
          • PointCloud
      • 3dmatch_train
        • bundlefusion-apt0
          • Keypoints
          • PointCloud
      • ETH
        • wood_autumn
          • Keypoints
          • PointCloud
      • WHU-TLS
        • Park
          • Keypoints
          • PointCloud

Train

To train YOHO yourself, you need to prepare the origin trainset with the backbone FCGF. We have retrained the FCGF with the rotation argument in [0,50] deg and the backbone model is in ./model/backbone. With the TrainData downloaded above, you can create the YOHO trainset with:

python YOHO_trainset.py

Warning: the process above needs 300G storage space.

The training process of YOHO is two-stage, you can run which with the commands sequentially:

python Train.py --Part PartI
python Train.py --Part PartII

We also offer the pretrained models in ./model/PartI_train and ./model/PartII_train. If the model above is demaged by accident(Runtime error: storage has wrong size), we offer another copy here.model

Demo

With the pretrained models, you can try YOHO by:

python YOHO_testset.py --dataset demo
python Demo.py

Test on the 3DMatch and 3DLoMatch

With the TestData downloaded above, the test on 3DMatch and 3DLoMatch can be done by:

  • Prepare the testset
python YOHO_testset.py --dataset 3dmatch
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset 3dmatch    #YOHO-C on 3DMatch
python Test.py --Part PartI  --max_iter 1000 --dataset 3dLomatch  #YOHO-C on 3DLoMatch
python Test.py --Part PartII --max_iter 1000 --dataset 3dmatch    #YOHO-O on 3DMatch
python Test.py --Part PartII --max_iter 1000 --dataset 3dLomatch  #YOHO-O on 3DLoMatch

where PartI is yoho-c and PartII is yoho-o, max_iter is the ransac times, PartI should be run first. All the results will be placed to ./data/YOHO_FCGF.

Generalize to the ETH dataset

With the TestData downloaded above, without any refinement of the model trained on the indoor 3DMatch dataset, the generalization result on the outdoor ETH dataset can be got by:

  • Prepare the testset [if out of memory, you can (1)change the parameter "batch_size" in YOHO_testset.py-->batch_feature_extraction()-->loader from 4 to 1 (2)or carry out the command scene by scene by controlling the scene processed now in utils/dataset.py-->get_dataset_name()-->if name==ETH]
python YOHO_testset.py --dataset ETH --voxel_size 0.15
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset ETH --ransac_d 0.2 --tau_2 0.2 --tau_3 0.5 #YOHO-C on ETH
python Test.py --Part PartII --max_iter 1000 --dataset ETH --ransac_d 0.2 --tau_2 0.2 --tau_3 0.5 #YOHO-O on ETH

All the results will be placed to ./data/YOHO_FCGF.

Generalize to the WHU-TLS dataset

With the TestData downloaded above, without any refinement of the model trained on the indoor 3DMatch dataset, the generalization result on the outdoor TLS dataset WHU-TLS can be got by:

  • Prepare the testset
python YOHO_testset.py --dataset WHU-TLS --voxel_size 0.8
  • Eval the results:
python Test.py --Part PartI  --max_iter 1000 --dataset WHU-TLS --ransac_d 1 --tau_2 0.5 --tau_3 1 #YOHO-C on WHU-TLS
python Test.py --Part PartII --max_iter 1000 --dataset WHU-TLS --ransac_d 1 --tau_2 0.5 --tau_3 1 #YOHO-O on WHU-TLS

All the results will be placed to ./data/YOHO_FCGF.

Related Projects

We thanks greatly for the FCGF, PerfectMatch, Predator and WHU-TLS for the backbone and the datasets.

You might also like...
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

PyTorch implementation of NeurIPS 2021 paper:
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

Point Cloud Registration Network
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

PyTorch implementation of the YOLO (You Only Look Once) v2
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

Comments
  • Questions about the Rotated 3DMatch/3DLoMatch results in YOHO

    Questions about the Rotated 3DMatch/3DLoMatch results in YOHO

    Hi Haiping,

    I notice that in Tab.1 of your paper, all baselines achieve similar results with or without arbitrary rotations. However, I tried to test some baselines (D3Feat and Predator) by adding arbitrary rotations to the input point clouds, they all suffer from significant performance degradation (~10% on 3DMatch and ~20% on 3DLoMatch). So I am wondering how you add rotations in your experiments and how you evaluate the results. And do you recompute the ground truth .info files?

    image
    opened by ghost 3
  • Some questions in knn_module.py

    Some questions in knn_module.py

    Hello, I am very interested in your work. But some problems were found: in knn_module.py The first import should be import knn_search.knn_module as _knn. _knn.knn_search in def knn is also problematic. Thanks.

    opened by HOUYONGKUO 1
Owner
Haiping Wang
Master in LIESMARS, Wuhan University.
Haiping Wang
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 2, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

null 75 Nov 24, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

null 153 Dec 14, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW ?? ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022