PCRNet: Point Cloud Registration Network using PointNet Encoding
Source Code Author: Vinit Sarode and Xueqian Li
Paper | Website | Video | Pytorch Implementation
Requirements:
- Cuda 10
- tensorflow==1.14
- transforms3d==0.3.1
- h5py==2.9.0
Dataset:
Path for dataset: Link
- Download 'train_data' folder from above link for iterative PCRNet.
- Download 'car_data' folder from above link for PCRNet.
Pretrained Model:
Download pretrained models from Link
How to use code:
Compile loss functions:
- cd utils/pc_distance
- make -f makefile_10.0 clean
- make -f makefile_10.0
Train Iterative-PCRNet:
- chmod +x train_itrPCRNet.sh
- ./train_itrPCRNet.sh
Train PCRNet:
- chmod +x train_PCRNet.sh
- ./train_PCRNet.sh
Citation
@InProceedings{vsarode2019pcrnet,
author = {Sarode, Vinit and Li, Xueqian and Goforth, Hunter and Aoki, Yasuhiro and Arun Srivatsan, Rangaprasad and Lucey, Simon and Choset, Howie},
title = {PCRNet: Point Cloud Registration Network using PointNet Encoding},
month = {Aug},
year = {2019}
}