config文件:
`_BASE_: "Base-bagtricks.yml"
MODEL:
BACKBONE:
NAME: "build_resnest_backbone"
DEPTH: "50x"
WITH_IBN: True
PRETRAIN: True
PRETRAIN_PATH: "/home/yantianyi/reid-1.0/pretrained/resnest50.pth"
HEADS:
NAME: "EmbeddingHead"
NORM: "BN"
WITH_BNNECK: True
NECK_FEAT: "before"
POOL_LAYER: "avgpool"
CLS_LAYER: "linear"
EMBEDDING_DIM: 512
LOSSES:
NAME: ("Cosface",)
COSFACE:
MARGIN: 0.25
GAMMA: 128
SCALE: 1.0
DATASETS:
NAMES: ("Alidata",)
TESTS: ("VeRi",)
INPUT:
SIZE_TRAIN: [224, 224]
SIZE_TEST: [224, 224]
DO_AUTOAUG: False
CJ:
ENABLED: True
PROB: 0.8
BRIGHTNESS: 0.35
CONTRAST: 0.35
SATURATION: 0.35
HUE: 0.2
DATALOADER:
PK_SAMPLER: True
NAIVE_WAY: True
NUM_INSTANCE: 4
NUM_WORKERS: 8
SOLVER:
OPT: "Adam"
MAX_EPOCH: 60
BASE_LR: 0.00035
BIAS_LR_FACTOR: 2.
WEIGHT_DECAY: 0.0005
WEIGHT_DECAY_BIAS: 0.0005
IMS_PER_BATCH: 196
FP16_ENABLED: True
SCHED: "WarmupMultiStepLR"
STEPS: [25, 40]
GAMMA: 0.1
WARMUP_FACTOR: 0.01
WARMUP_ITERS: 10
CHECKPOINT_PERIOD: 10
OUTPUT_DIR: "/home/yantianyi/logs/resnest50_ali_512_cos"
`
部分log:
`[32m[01/25 17:57:48 fastreid]: [0mFull config saved to /home/yantianyi/logs/resnest50_ali_512_cos/config.yaml
[32m[01/25 17:57:48 fastreid.utils.env]: [0mUsing a generated random seed 48316424
[32m[01/25 17:57:48 fastreid.engine.defaults]: [0mPrepare training set
[32m[01/25 17:57:53 fastreid.data.datasets.bases]: [0m=> Loaded Alidata in csv format:
[36m| subset | # ids | # images | # cameras |
|:---------|:--------|:-----------|:------------|
| train | 127817 | 1669888 | 1 |[0m
[32m[01/25 17:57:55 fastreid.engine.defaults]: [0mAuto-scaling the num_classes=127817
[32m[01/25 17:57:56 fastreid.modeling.backbones.resnest]: [0mLoading pretrained model from /home/yantianyi/reid-1.0/pretrained/resnest50.pth
[32m[01/25 17:57:56 fastreid.modeling.backbones.resnest]: [0mThe checkpoint state_dict contains keys that are not used by the model:
[35mfc.{weight, bias}[0m
[32m[01/25 17:57:57 fastreid.engine.defaults]: [0mModel:
Baseline(
(backbone): ResNeSt(
(conv1): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=1, stride=1, padding=0)
(1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(avd_layer): AvgPool2d(kernel_size=3, stride=2, padding=1)
(conv2): SplAtConv2d(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(avd_layer): AvgPool2d(kernel_size=3, stride=2, padding=1)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(avd_layer): AvgPool2d(kernel_size=3, stride=1, padding=1)
(conv2): SplAtConv2d(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
(bn0): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=1, stride=1, padding=0)
(1): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=2, bias=False)
(bn0): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): SplAtConv2d(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), groups=2, bias=False)
(bn0): BatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(fc1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(rsoftmax): rSoftMax()
)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(heads): EmbeddingHead(
(pool_layer): AdaptiveAvgPool2d(output_size=1)
(bottleneck): Sequential(
(0): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(classifier): Linear(in_features=512, out_features=127817, bias=False)
)
)
Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods.
Defaults for this optimization level are:
enabled : True
opt_level : O1
cast_model_type : None
patch_torch_functions : True
keep_batchnorm_fp32 : None
master_weights : None
loss_scale : dynamic
Processing user overrides (additional kwargs that are not None)...
After processing overrides, optimization options are:
enabled : True
opt_level : O1
cast_model_type : None
patch_torch_functions : True
keep_batchnorm_fp32 : None
master_weights : None
loss_scale : dynamic
Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'",)
Warning: apex was installed without --cpp_ext. Falling back to Python flatten and unflatten.
./fastreid/evaluation/rank.py:15: UserWarning: Cython rank evaluation (very fast so highly recommended) is unavailable, now use python evaluation.
'Cython rank evaluation (very fast so highly recommended) is '
./fastreid/evaluation/roc.py:19: UserWarning: Cython roc evaluation (very fast so highly recommended) is unavailable, now use python evaluation.
'Cython roc evaluation (very fast so highly recommended) is '
Warning: apex was installed without --cpp_ext. Falling back to Python flatten and unflatten.
./fastreid/evaluation/rank.py:15: UserWarning: Cython rank evaluation (very fast so highly recommended) is unavailable, now use python evaluation.
'Cython rank evaluation (very fast so highly recommended) is '
./fastreid/evaluation/roc.py:19: UserWarning: Cython roc evaluation (very fast so highly recommended) is unavailable, now use python evaluation.
'Cython roc evaluation (very fast so highly recommended) is '`
stale