Fair Recommendation in Two-Sided Platforms

Overview

Fair Recommendation in Two-Sided Platforms

Running FairRec or FairRecPlus

python FairRec.py google_local_fact.csv 10 0.5
python FairRecPlus.py google_local_fact.csv 10 0.5

There are three arguments here.

  • path to csv file with relevance scores (rows: customers, columns: producers) like google_local_fact.csv above.
  • size of recommendation or k like 10 above.
  • value of α (our producer-side guarantee will be α×MMS. The value of α can be in between 0 and 1) like 0.5 above.

It saves the recommendations in zipped pickle file (dictionary format { customer : list_of_recommended_products }).

Relevance Scores

You can use the relevance scores estimated in your dataset in csv format (rows: customers, columns: producers) for your application scenario. Alternatively you can test with ours. The relevance scores calculated for the datasets (used in the paper) can be found in the following links in zipped csv format.

Citation Information

If you use this repository in your research, please cite the following paper.

You can use the following bibtex.

@inproceedings{10.1145/3366423.3380196,
author = {Patro, Gourab K and Biswas, Arpita and Ganguly, Niloy and Gummadi, Krishna P. and Chakraborty, Abhijnan},
title = {FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms},
year = {2020},
isbn = {9781450370233},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3366423.3380196},
doi = {10.1145/3366423.3380196},
booktitle = {Proceedings of The Web Conference 2020},
pages = {1194–1204},
numpages = {11},
keywords = {Fair Allocation, Fair Recommendation, Maximin Share, Two-Sided Markets, Envy-Freeness},
location = {Taipei, Taiwan},
series = {WWW ’20}
}
You might also like...
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

PyTorch 1.0 inference in C++ on Windows10 platforms
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Human Action Controller - A human action controller running on different platforms.
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Owner
gourabgggg
PhD Scholar, Computer Science & Engineering, IIT Kharagpur
gourabgggg
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 7, 2023
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 8, 2023
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 1, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 4, 2023
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 3, 2023
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

null 0 Dec 18, 2021