Single object tracking and segmentation.

Related tags

Deep Learning SOTS
Overview

Single/Multiple Object Tracking and Segmentation

Codes and comparison of recent single/multiple object tracking and segmentation.

News

💥 AutoMatch is accepted by ICCV2021. The training and testing code has been released in this codebase.

💥 CSTrack ranks 5/4000 at Tianchi Global AI Competition.

💥 Ocean is accepted by ECCV2020. [OceanPlus] is accepted by IEEE TIP.

💥 SiamDW is accepted by CVPR2019 and selected as oral presentation.

Supported Trackers (SOT and MOT)

Single-Object Tracking (SOT)

Multi-Object Tracking (MOT)

Results Comparison

Branches

  • main: for our SOT trackers
  • MOT: for our MOT trackers
  • v0: old codebase supporting OceanPlus and TensorRT testing.

Please clone the branch to your needs.

Structure

  • experiments: training and testing settings
  • demo: figures for readme
  • dataset: testing dataset
  • data: training dataset
  • lib: core scripts for all trackers
  • snapshot: pre-trained models
  • pretrain: models trained on ImageNet (for training)
  • tracking: training and testing interface
$SOTS
|—— experimnets
|—— lib
|—— snapshot
  |—— xxx.model
|—— dataset
  |—— VOT2019.json 
  |—— VOT2019
     |—— ants1...
  |—— VOT2020
     |—— ants1...
|—— ...

Tracker Details

AutoMatch [ICCV2021]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
AutoMatch replaces the essence of Siamese tracking, i.e. the cross-correlation and its variants, to a learnable matching network. The underlying motivation is that heuristic matching network design relies heavily on expert experience. Moreover, we experimentally find that one sole matching operator is difficult to guarantee stable tracking in all challenging environments. In this work, we introduce six novel matching operators from the perspective of feature fusion instead of explicit similarity learning, namely Concatenation, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-Transformer and Transductive-Guidance, to explore more feasibility on matching operator selection. The analyses reveal these operators' selective adaptability on different environment degradation types, which inspires us to combine them to explore complementary features. We propose binary channel manipulation (BCM) to search for the optimal combination of these operators.

Ocean

Ocean [ECCV2020]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]

Ocean proposes a general anchor-free based tracking framework. It includes a pixel-based anchor-free regression network to solve the weak rectification problem of RPN, and an object-aware classification network to learn robust target-related representation. Moreover, we introduce an effective multi-scale feature combination module to replace heavy result fusion mechanism in recent Siamese trackers. This work also serves as the baseline model of OceanPlus. An additional TensorRT toy demo is provided in this repo.

Ocean

SiamDW [CVPR2019]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
SiamDW is one of the pioneering work using deep backbone networks for Siamese tracking framework. Based on sufficient analysis on network depth, output size, receptive field and padding mode, we propose guidelines to build backbone networks for Siamese tracker. Several deeper and wider networks are built following the guidelines with the proposed CIR module.

SiamDW

OceanPlus [IEEE TIP]

[Paper] [Raw Results] [Training and Testing Tutorial] [Demo]
Official implementation of the OceanPlus tracker. It proposes an attention retrieval network (ARN) to perform soft spatial constraints on backbone features. Concretely, we first build a look-up-table (LUT) with the ground-truth mask in the starting frame, and then retrieve the LUT to obtain a target-aware attention map for suppressing the negative influence of background clutter. Furthermore, we introduce a multi-resolution multi-stage segmentation network (MMS) to ulteriorly weaken responses of background clutter by reusing the predicted mask to filter backbone features.

OceanPlus


CSTrack [Arxiv now]

[Paper] [Training and Testing Tutorial] [Demo]
CSTrack proposes a strong ReID based one-shot MOT framework. It includes a novel cross-correlation network that can effectively impel the separate branches to learn task-dependent representations, and a scale-aware attention network that learns discriminative embeddings to improve the ReID capability. This work also provides an analysis of the weak data association ability in one-shot MOT methods. Our improvements make the data association ability of our one-shot model is comparable to two-stage methods while running more faster.

CSTrack

This version can achieve the performance described in the paper (70.7 MOTA on MOT16, 70.6 MOTA on MOT17). The new version will be released soon. If you are interested in our work or have any questions, please contact me at [email protected].

Other trackers, coming soon ...

☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️ ☁️

References

https://github.com/StrangerZhang/pysot-toolkit
...

Contributors

Comments
  • cstrack训练效果很差

    cstrack训练效果很差

    您好,我用crowdhuman来训练cstrack模型的时候,训练速度很慢,gpu使用率波动很大,一下百分之百,一下百分之零,我尝试调整num_work数量,但是cpu使用率始终只用了一个核,不知道要怎么解决这个问题;第二个问题是我用yolov5l做预训练模型,但训练效果很不理想,recall一直降低,不知道要怎么解决这个问题;第三个问题是您网站上提供的yolov5l模型和cstrack.pt模型是在哪个数据集上训练的结果呢

    opened by yuanxiaoxiaogit 13
  • 求助,关于mot benchmark提交的问题

    求助,关于mot benchmark提交的问题

    您好,我有几个小问题需要向您请教一下,西北工业大学在读学生,直博生在读,博士课题就是多目标跟踪。 第一个问题是,我在mot benchmark上注册一直没有回应,注册了很多次,用学校邮箱或者其他邮箱,都一年了,没有任何回应。 第二个问题是,现在在使用很早之前一个师兄注册的账号,但是最近突然发现提交不上去了,能到用户界面,也能load 结果文件,提交的时候也会显示提交成功,界面说是会在几分钟内返回结果,但是没有任何回应,刷新个人用户界面时,显示的提交次数是0,最近两周试了很多次,都是这样。 比较好奇是因为西工大邮箱或者ip问题还是怎么回事儿,其他同方向的伙伴们可以提交和注册吗

    opened by theFreedomIWanted 6
  • One More Check: Making “Fake Background” Be Tracked Again

    One More Check: Making “Fake Background” Be Tracked Again

    Thank you for your nice recent paper, "One More Check: Making “Fake Background” Be Tracked Again" which shows high improvement in performance compared to the current state of the art in Multi-object tracking. The link on the paper direct to this repository is where we can find the implementation, however, I didn't find its implementation.

    Also on the paper " https://arxiv.org/pdf/2104.09441v1.pdf "stated that other information can be found in Supplementary material, but also I didn't find those supplementary materials.

    Can you share those supplementary materials? Also, when do you expect to release the code of this paper??

    Thank you again for your nice work.

    opened by NaifahNurya 5
  • [CSTrack] max_index setting in `LoadImagesAndLabels ` class

    [CSTrack] max_index setting in `LoadImagesAndLabels ` class

    Hello! I have a question about max_index setting in LoadImagesAndLabels

    for ds, label_paths in self.label_files_dict.items():
              max_index = -1
              for lp in label_paths:
                  lb = np.loadtxt(lp)
                  if len(lb) < 1:
                      continue
                  if len(lb.shape) < 2:
                      img_max = lb[1]
                  else:
                      img_max = np.max(lb[:, 1])
                  if img_max > max_index:
                      max_index = img_max
              self.tid_num[ds] = max_index + 1 # here
    
          last_index = 0
          for i, (k, v) in enumerate(self.tid_num.items()):
                    self.tid_start_index[k] = last_index
                    last_index += v
    

    when self.tid_num[ds]=max_index+1 is applied to all dataset, index i think that is not used occur.

    ex) |dataset|id range|max_index + 1|tid_start_index| |:------:|:---:|:---:|:---:| |mot17|1~517|518|0| |mot20|1~2215|2216|518| |mot16|1~517|518|2734|

    Between mot20 and mot16, an index 2733 is not used.

    Does you have any other reason why self.tid_num[ds]=max_index+1 is applied to all dataset, not applying only first dataset?

    opened by Junhojuno 4
  • pretrained weight

    pretrained weight

    Download the link in the pre-training weights is compressed package, how should this be used? RuntimeError: snapshot/Ocean.pth is a zip archive (did you mean to use torch.jit.load()?)

    opened by QiyuLuo 3
  • 你好,ocean的分类标签似乎存在问题,lib/dataset/ocean.py中,334行的aug_apply(Corner(*crop_bbox), param, shape)返回的param没有用上,这样做似乎导致制作的标签脱离了gt

    你好,ocean的分类标签似乎存在问题,lib/dataset/ocean.py中,334行的aug_apply(Corner(*crop_bbox), param, shape)返回的param没有用上,这样做似乎导致制作的标签脱离了gt

    具体代码见: 这一行。 我仔细阅读了数据集这里的代码,发现制作分类的label这里,如果不使用这里aug_apply返回的real_param,制作出的标签似乎脱离了groundtruth,这里是否应该改为crop_bbox, param = aug_apply(Corner(*crop_bbox), param, shape)?如果是我的理解有误,请多多指教!

    opened by n1-k0 3
  • Code for CSTrackV2

    Code for CSTrackV2

    Hi Really admire the work "One More Check: Making “Fake Background” Be Tracked Again". Just kindly ask, any plans to release the corresponding code? Thanks.

    opened by Leo63963 3
  • clip bbox issue

    clip bbox issue

    Thanks for your wonderful work! I find that on MOTChallenge dataset clipping bbox may lead to degraded results. I comment all the clip bbox operations in https://github.com/JudasDie/SOTS/blob/master/lib/dataset/cstrack.py and meet the following training error. Can you help me fix this? Thanks very much. @H11zang

    Traceback (most recent call last):
    File "train_cstrack.py", line 517, in
    train(hyp, opt, device, tb_writer)
    File "train_cstrack.py", line 319, in train
    loss, loss_items = mot_loss(pred, targets.to(device), model) # scaled by batch_size
    File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
    File "/opt/tiger/demo/SOTS/tracking/../lib/core/mot/base_trainer.py", line 355, in forward
    giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target)
    File "/opt/tiger/demo/SOTS/tracking/../lib/core/mot/base_trainer.py", line 67, in bbox_iou
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
    RuntimeError: CUDA error: device-side assert triggered
    /pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:84: operator(): block: [79,0,0], thread: [96,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed. /pytorch/aten/src/ATen/native/cuda/IndexKernel.cu:84: operator(): block: [79,0,0], thread: [97,0,0] Assertion index >= -sizes[i] && index < sizes[i] && "index out of bounds" failed.

    opened by ifzhang 3
  • cstrack测试模型时得到的结果为NAN,或许是权重不对应?

    cstrack测试模型时得到的结果为NAN,或许是权重不对应?

    当我按照cstrack.md中的步骤进行模型的测试时,我的命令如下: python test_cstrack.py --nms_thres 0.6 --conf_thres 0.5 --weights ../weights/cstrack.pt --data_dir ../dataset --device 0 --test_mot17 True --vis_state 1 得到的结果为: 2022-05-06 10:40:17 [INFO]: start seq: MOT17-01-SDP Creating model...

    78,863,078 total parameters. 2022-05-06 10:40:19 [INFO]: Processing frame 0 (100000.00 fps) 2022-05-06 10:40:54 [INFO]: Processing frame 220 (8.14 fps) 2022-05-06 10:40:57 [INFO]: Processing frame 240 (8.16 fps) 2022-05-06 10:41:00 [INFO]: Processing frame 260 (8.18 fps) 2022-05-06 10:41:03 [INFO]: Processing frame 280 (8.20 fps) 2022-05-06 10:41:06 [INFO]: Processing frame 300 (8.21 fps) 2022-05-06 10:41:09 [INFO]: Processing frame 320 (8.21 fps) 2022-05-06 10:41:30 [INFO]: Time elapsed: 54.46 seconds, FPS: 8.26 IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM MOTA MOTP IDt IDa IDm MOT17-01-SDP 0.0% 0.0% nan% nan% 0.0% 0 0 0 0 4293 0 0 0 -inf% nan 0 0 0 OVERALL 0.0% 0.0% nan% nan% 0.0% 0 0 0 0 4293 0 0 0 -inf% nan 0 0 0 detection_num: [4293] 4293 id_num: [53] 53 请问是什么原因造成这样的结果,数据需要进行预处理吗,非常感谢你突出的工作!

    opened by Soyad-yao 2
  • access to cstrack pretrained model

    access to cstrack pretrained model

    Hi. Thank you for your great work. May I have the access to the cstrack pre-trained model? I cannot use my google drive account to download from your link. Please add my gmail [email protected].

    opened by sieumap43 2
  • Ocean给出的结果与论文之间的差异问题

    Ocean给出的结果与论文之间的差异问题

    您好,感谢您提出的卓越工作! 这里有一些让我存在困惑的结果问题,希望向您请教一下!

    我在 Ocean 论文中得到到的VOT2019结果为

    offline版本 A 0.590 | R 0.376 | EAO 0.327
    online版本 A 0.594 | R 0.316 | EAO 0.350
    

    但您提供的 Google Drive 中的结果只有 Ocean_VOT2019_0.323 文件夹,测试的指标为

    A 0.598 | R  0.401 | EAO 0.323
    

    请问 EAO 0.323 的是哪一个版本呢?为什么和论文会有这么大的差异呢?

    谢谢!💖

    opened by Soarkey 2
  • testing question

    testing question

    /home/lsw/miniconda3/envs/SOTS/bin/python /home/lsw/SOT/SOTS/tracking/test_sot.py model backbone: ResNet50Dilated model neck: ShrinkChannelS3S4 model head: Learn2Match model build done! SiamInference( (backbone): ResNet50Dilated( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (layer1): Sequential( (0): Bottleneck( (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer2): Sequential( (0): Bottleneck( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer3): Sequential( (0): Bottleneck( (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (4): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (5): Bottleneck( (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False) (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) ) (neck): ShrinkChannelS3S4( (downsample): Sequential( (0): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) (downsample_s3): Sequential( (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) ) ) (head): Learn2Match( (regression): L2Mregression( (reg_encode): SimpleMatrix( (matrix11_k): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (matrix11_s): Sequential( (0): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (roi_te): roi_template( (fea_encoder): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (fea_encoder_s3): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (spatial_conv): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) (spatial_conv_s3): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) ) (LTM): LTM( (FiLM): FiLM( (s_embed): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (conv_g): Sequential( (0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (1): LeakyReLU(negative_slope=0.1) ) (conv_b): Sequential( (0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (1): LeakyReLU(negative_slope=0.1) ) ) (PC): PairRelation( (s_embed): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) (t_embed): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1)) (down): Conv2d(225, 256, kernel_size=(1, 1), stride=(1, 1)) ) (embed2): Sequential( (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) ) (bbox_tower): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): ReLU() (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (7): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (8): ReLU() ) (bbox_pred): Conv2d(256, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (classification): L2Mclassification( (LTM): LTM( (Transformer): SimpleSelfAtt( (s_embed): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (t_embed_v): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (t_embed): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (trans): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=256, out_features=256, bias=True) ) ) (FiLM): FiLM( (s_embed): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (conv_g): Sequential( (0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (1): LeakyReLU(negative_slope=0.1) ) (conv_b): Sequential( (0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (1): LeakyReLU(negative_slope=0.1) ) ) (embed2): Sequential( (0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) ) (roi_cls): roi_classification( (fea_encoder): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) (3): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): LeakyReLU(negative_slope=0.1) ) (fea_encoder_s3): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) (3): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): LeakyReLU(negative_slope=0.1) ) (down_spatial_conv): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) (down_spatial_linear): Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LeakyReLU(negative_slope=0.1) ) (down_spatial_conv_s3): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) (down_target_s3): Sequential( (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) (down_target_s4): Sequential( (0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1)) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) ) (down_spatial_linear_s3): Sequential( (0): Linear(in_features=128, out_features=128, bias=True) (1): LeakyReLU(negative_slope=0.1) ) (merge_s3s4_s2): Sequential( (0): Linear(in_features=256, out_features=256, bias=True) (1): LeakyReLU(negative_slope=0.1) (2): Linear(in_features=256, out_features=256, bias=True) (3): LeakyReLU(negative_slope=0.1) ) (merge_s3s4_s1): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.1) (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): LeakyReLU(negative_slope=0.1) ) (pred_s1): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pred_s2): Linear(in_features=256, out_features=1, bias=True) ) ) ) ) ===> init Siamese <==== load pretrained model from ../snapshot/AutoMatch.pth remove prefix 'module.' change features.features to backbone 2022-12-02 22:47:17.534 | INFO | lib.utils.model_helper:check_keys:178 - missing keys:[] Traceback (most recent call last): File "/home/lsw/SOT/SOTS/tracking/test_sot.py", line 150, in main() File "/home/lsw/SOT/SOTS/tracking/test_sot.py", line 135, in main siam_net = loader.load_pretrain(siam_net, resume, addhead=True, print_unuse=False) File "/home/lsw/SOT/SOTS/tracking/../lib/utils/model_helper.py", line 209, in load_pretrain model.load_state_dict(pretrained_dict, strict=True) File "/home/lsw/miniconda3/envs/Unicorn/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1483, in load_state_dict self.class.name, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for SiamInference: Unexpected key(s) in state_dict: "head.regression.LTM.GuidedSP.s_embed.weight", "head.regression.LTM.GuidedSP.s_embed.bias", "head.regression.LTM.GuidedSP.t_embed.weight", "head.regression.LTM.GuidedSP.t_embed.bias", "head.regression.LTM.PointDW.s_embed.weight", "head.regression.LTM.PointDW.s_embed.bias", "head.regression.LTM.PointDW.t_embed.weight", "head.regression.LTM.PointDW.t_embed.bias", "head.regression.LTM.PointAdd.s_embed.weight", "head.regression.LTM.PointAdd.s_embed.bias", "head.regression.LTM.PointAdd.t_embed.weight", "head.regression.LTM.PointAdd.t_embed.bias", "head.regression.LTM.Transformer.s_embed.weight", "head.regression.LTM.Transformer.s_embed.bias", "head.regression.LTM.Transformer.t_embed_v.weight", "head.regression.LTM.Transformer.t_embed_v.bias", "head.regression.LTM.Transformer.t_embed.weight", "head.regression.LTM.Transformer.t_embed.bias", "head.regression.LTM.Transformer.trans.in_proj_weight", "head.regression.LTM.Transformer.trans.in_proj_bias", "head.regression.LTM.Transformer.trans.out_proj.weight", "head.regression.LTM.Transformer.trans.out_proj.bias", "head.classification.LTM.GuidedSP.s_embed.weight", "head.classification.LTM.GuidedSP.s_embed.bias", "head.classification.LTM.GuidedSP.t_embed.weight", "head.classification.LTM.GuidedSP.t_embed.bias", "head.classification.LTM.PointDW.s_embed.weight", "head.classification.LTM.PointDW.s_embed.bias", "head.classification.LTM.PointDW.t_embed.weight", "head.classification.LTM.PointDW.t_embed.bias", "head.classification.LTM.PointAdd.s_embed.weight", "head.classification.LTM.PointAdd.s_embed.bias", "head.classification.LTM.PointAdd.t_embed.weight", "head.classification.LTM.PointAdd.t_embed.bias", "head.classification.LTM.PC.s_embed.weight", "head.classification.LTM.PC.s_embed.bias", "head.classification.LTM.PC.t_embed.weight", "head.classification.LTM.PC.t_embed.bias", "head.classification.LTM.PC.down.weight", "head.classification.LTM.PC.down.bias".

    Process finished with exit code 1 图片

    Hello,i met this problem when i try to testing ,but i can not solve it.Could you help me to solve it if you have some time?

    opened by wyl12 0
  • automatch tune problem

    automatch tune problem

    hi!When i run tune-sot.py, it reports:

    (pid=84596) 2022-12-01 19:00:31,528 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84596) Traceback (most recent call last): (pid=84596) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84596) actor_class = pickle.loads(pickled_class) (pid=84596) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84596) import(name) (pid=84596) ModuleNotFoundError: No module named 'tracker' (pid=84597) 2022-12-01 19:00:31,513 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84597) Traceback (most recent call last): (pid=84597) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84597) actor_class = pickle.loads(pickled_class) (pid=84597) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84597) import(name) (pid=84597) ModuleNotFoundError: No module named 'tracker' (pid=84599) 2022-12-01 19:00:31,525 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84599) Traceback (most recent call last): (pid=84599) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84599) actor_class = pickle.loads(pickled_class) (pid=84599) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84599) import(name) (pid=84599) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:31,564 ERROR trial_runner.py:523 -- Trial fitness_5f069808: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84596, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. 2022-12-01 19:00:31,570 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 676d0b440100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:31,586 ERROR trial_runner.py:523 -- Trial fitness_5f0f687a: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84599, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. 2022-12-01 19:00:31,616 ERROR trial_runner.py:523 -- Trial fitness_5f3270ea: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84601, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. (pid=84601) 2022-12-01 19:00:31,567 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84601) Traceback (most recent call last): (pid=84601) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84601) actor_class = pickle.loads(pickled_class) (pid=84601) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84601) import(name) (pid=84601) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:31,857 ERROR trial_runner.py:523 -- Trial fitness_5f40249c: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84626, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. 2022-12-01 19:00:31,860 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 552068930100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    (pid=84626) 2022-12-01 19:00:31,850 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84626) Traceback (most recent call last): (pid=84626) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84626) actor_class = pickle.loads(pickled_class) (pid=84626) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84626) import(name) (pid=84626) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:31,922 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID adb556570100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:31,926 ERROR trial_runner.py:523 -- Trial fitness_5f744182: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84611, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. 2022-12-01 19:00:31,949 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 2f6e56200100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:31,954 ERROR trial_runner.py:523 -- Trial fitness_5f78b94c: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84610, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. (pid=84610) 2022-12-01 19:00:31,941 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84610) Traceback (most recent call last): (pid=84610) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84610) actor_class = pickle.loads(pickled_class) (pid=84610) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84610) import(name) (pid=84610) ModuleNotFoundError: No module named 'tracker' (pid=84611) 2022-12-01 19:00:31,919 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84611) Traceback (most recent call last): (pid=84611) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84611) actor_class = pickle.loads(pickled_class) (pid=84611) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84611) import(name) (pid=84611) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:31,977 ERROR trial_runner.py:523 -- Trial fitness_5f7c0872: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84629, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. 2022-12-01 19:00:31,985 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID c39997530100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    (pid=84629) 2022-12-01 19:00:31,971 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84629) Traceback (most recent call last): (pid=84629) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84629) actor_class = pickle.loads(pickled_class) (pid=84629) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84629) import(name) (pid=84629) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:32,220 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 98ba875f0100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:32,225 ERROR trial_runner.py:523 -- Trial fitness_5f80b8b8: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84607, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. (pid=84607) 2022-12-01 19:00:32,217 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84607) Traceback (most recent call last): (pid=84607) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84607) actor_class = pickle.loads(pickled_class) (pid=84607) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84607) import(name) (pid=84607) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:32,300 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 842595fe0100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:32,303 ERROR trial_runner.py:523 -- Trial fitness_5fa5f254: Error processing event. Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/trial_runner.py", line 471, in _process_trial result = self.trial_executor.fetch_result(trial) File "/root/miniconda3/lib/python3.8/site-packages/ray/tune/ray_trial_executor.py", line 430, in fetch_result result = ray.get(trial_future[0], DEFAULT_GET_TIMEOUT) File "/root/miniconda3/lib/python3.8/site-packages/ray/worker.py", line 1538, in get raise value.as_instanceof_cause() ray.exceptions.RayTaskError(RuntimeError): ray::TemporaryActor.train() (pid=84608, ip=172.17.0.7) File "python/ray/_raylet.pyx", line 439, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 474, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 478, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 479, in ray._raylet.execute_task File "python/ray/_raylet.pyx", line 432, in ray._raylet.execute_task.function_executor RuntimeError: The actor with name ImplicitFunc failed to be imported, and so cannot execute this method. (pid=84608) 2022-12-01 19:00:32,297 ERROR function_manager.py:496 -- Failed to load actor class ImplicitFunc. (pid=84608) Traceback (most recent call last): (pid=84608) File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs (pid=84608) actor_class = pickle.loads(pickled_class) (pid=84608) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport (pid=84608) import(name) (pid=84608) ModuleNotFoundError: No module named 'tracker' 2022-12-01 19:00:32,625 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 688d7fcd0100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    2022-12-01 19:00:32,625 WARNING worker.py:1134 -- Failed to unpickle actor class 'ImplicitFunc' for actor ID 3261819f0100. Traceback: Traceback (most recent call last): File "/root/miniconda3/lib/python3.8/site-packages/ray/function_manager.py", line 494, in _load_actor_class_from_gcs actor_class = pickle.loads(pickled_class) File "/root/miniconda3/lib/python3.8/site-packages/ray/cloudpickle/cloudpickle.py", line 1096, in subimport import(name) ModuleNotFoundError: No module named 'tracker'

    I have run many times, somtimes it shows ModuleNotFoundError: No module named 'utils' I have tied many ways, like changing the version of ray for 0.8.4 to 0.6.0 or appending the utils to system path. it still didn't work. I'm not sure what causes this problem.

    thank you, expect your reply!

    opened by Neo233333 0
  • OMC - IDswitch metric

    OMC - IDswitch metric

    I really appreciate your great work and sharing OMC.

    Would you mind sharing HOTA and IDsw of OMC on the MOT16/17/20 test results which are not available from the paper?

    Thank you.

    opened by HYUNJS 0
  • OMC Training Problem

    OMC Training Problem

    Thanks for your contributions. (1) I train the OMC according to training and testing turorial. When I train with the re-check network,if I use best.pt, the MOTA on MOT16 test dataset is only 69.0. But if I use last.pt, the MOTA on MOT16 test dataset is 74.9.Why? (2) The best MOTA on the MOT16 test is only 74.9,it's much lower than paper. And I don't modify the code.How to adjust training process to improve the MOTA?

    opened by wxy932 0
Owner
ZP ZHANG
NLPR, CASIA. Ph.D condidate
ZP ZHANG
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

null 130 Dec 26, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

null 348 Dec 22, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 4, 2023
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 3, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

yifan liu 147 Dec 3, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around mAP@23 with TAO test set (based on our estimation).

null 79 Oct 8, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022