poutyne-transformers
Train
Installation
pip install poutyne-transformers
Example
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
from torch.utils.data import DataLoader
from torch import optim
from poutyne import Model
from poutyne_transformers import TransformerCollator, model_loss, ModelWrapper
print('Loading model & tokenizer.')
transformer = AutoModelForSequenceClassification.from_pretrained('distilbert-base-cased', num_labels=2, return_dict=True)
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-cased')
print('Loading & preparing dataset.')
dataset = load_dataset("imdb")
dataset = dataset.map(lambda entry: tokenizer(entry['text'], add_special_tokens=True, padding='max_length', truncation=True), batched=True)
dataset = dataset.remove_columns(['text'])
dataset.set_format('torch')
collate_fn = TransformerCollator()
train_dataloader = DataLoader(dataset['train'], batch_size=16, collate_fn=collate_fn)
test_dataloader = DataLoader(dataset['test'], batch_size=16, collate_fn=collate_fn)
print('Preparing training.')
wrapped_transformer = ModelWrapper(transformer)
optimizer = optim.AdamW(wrapped_transformer.parameters(), lr=5e-5)
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
model = Model(wrapped_transformer, optimizer, loss_function=model_loss, device=device)
print('Starting training.')
model.fit_generator(train_dataloader, test_dataloader, epochs=1)