Random Directed Acyclic Graph Generator

Overview

DAG_Generator

Random Directed Acyclic Graph Generator

verison1.0

简介

工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权的有向边$E_{ij}$表示。每个有向边$E_{ij}$表示$T_i$是$T_j$的父任务,$T_j$只能在其所有父任务完成后执行。为了方便操作和展示,一般在所有任务之前设立一个Start虚拟节点,作为所有没有父任务节点的父节点;同理,在所有任务之后设立一个Exit虚拟节点,作为所有没有子任务节点的子节点,这两个虚拟节点都没有计算资源需求。

此程序用于随机生成有向无环图(DAG)。本来的想法是按照文献[1]的方法来生成DAG,但是原文没有给出代码,难以实现,所以就仿照文章的设定来生成DAG。

确定表示一个DAG需要三个数据,分别是是节点连接信息,各节点的父节点数,各节点的子节点数。由这三个元素可以确定一个独立的DAG。例如一个10个节点的DAG:

Edges: [(1, 5), (1, 6), (2, 4), (2, 6), (3, 6), (4, 7), (4, 9), (5, 9), (5, 7), (6, 7), ('Start', 1), ('Start', 2), ('Start', 3), ('Start', 8), ('Start', 10), (7, 'Exit'), (8, 'Exit'), (9, 'Exit'), (10, 'Exit')]

In_degree: [1, 1, 1, 1, 1, 3, 3, 1, 2, 1] #不包括虚拟节点

out_degree: [2, 2, 1, 2, 2, 1, 1, 1, 1, 1] #不包括虚拟节点

DAG

参数设定
set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                            #max out_degree of one node
set_alpha = [0.5,1.0,1.5]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity
  1. set_dag_size : 设定的DAG任务大小,有[20,30,40,50,60,70,80,90],默认为20。
  2. set_max_out: 设定的一个节点最大出度,有[1,2,3,4,5],默认为2。
  3. set_alpha : 设定DAG控制形状的参数,有[0.5,1.0,1.5],默认为1.0。
  4. set_beta :设定DAG每层宽度的规则度参数,有[0.0,0.5,1.0,2.0] ,默认为1.0。

DAG的层数(深度)被设置为$\sqrt{set_dag_size}/set_alpha$, $\alpha$控制着DAG的Fat,$\alpha$越小,DAG越瘦长,$\alpha$越大,DAG越肥密。

DAGS

每层的宽度被随机设置为均值为$set_dag_size/length$,标准差为$\beta$的正态分布。$\beta$越大,DAG越不规则。

绘制

使用networkx库绘制DAG图。

def plot_DAG(edges,postion):
    g1 = nx.DiGraph()
    g1.add_edges_from(edges)
    nx.draw_networkx(g1, arrows=True, pos=postion)
    plt.savefig("DAG.png", format="PNG")
    return plt.clf

n = 30,max_out = 3, $\alpha$ = 1, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 0.5, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 1.5, $\beta$ = 1.0

DAG

代码
import random,math,argparse
import numpy as np
from numpy.random.mtrand import sample
from matplotlib import pyplot as plt
import networkx as nx

parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='default', type=str)#parameters setting
parser.add_argument('--n', default=10, type=int)          #number of DAG  nodes
parser.add_argument('--max_out', default=2, type=float)   #max out_degree of one node
parser.add_argument('--alpha',default=1,type=float)       #shape 
parser.add_argument('--beta',default=1.0,type=float)      #regularity
args = parser.parse_args()

set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                              #max out_degree of one node
set_alpha = [0.5,1.0,2.0]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity

def DAGs_generate(mode = 'default',n = 10,max_out = 2,alpha = 1,beta = 1.0):
    ##############################################initialize###########################################
    args.mode = mode
    if args.mode != 'default':
        args.n = random.sample(set_dag_size,1)[0]
        args.max_out = random.sample(set_max_out,1)[0]
        args.alpha = random.sample(set_alpha,1)[0]
        args.beta = random.sample(set_alpha,1)[0]
    else: 
        args.n = n
        args.max_out = max_out
        args.alpha = alpha
        args.beta = beta

    length = math.floor(math.sqrt(args.n)/args.alpha)
    mean_value = args.n/length
    random_num = np.random.normal(loc = mean_value, scale = args.beta,  size = (length,1))    
    ###############################################division############################################
    position = {'Start':(0,4),'Exit':(10,4)}
    generate_num = 0
    dag_num = 1
    dag_list = [] 
    for i in range(len(random_num)):
        dag_list.append([]) 
        for j in range(math.ceil(random_num[i])):
            dag_list[i].append(j)
        generate_num += math.ceil(random_num[i])

    if generate_num != args.n:
        if generate_num<args.n:
            for i in range(args.n-generate_num):
                index = random.randrange(0,length,1)
                dag_list[index].append(len(dag_list[index]))
        if generate_num>args.n:
            i = 0
            while i < generate_num-args.n:
                index = random.randrange(0,length,1)
                if len(dag_list[index])==1:
                    i = i-1 if i!=0 else 0
                else:
                    del dag_list[index][-1]
                i += 1

    dag_list_update = []
    pos = 1
    max_pos = 0
    for i in range(length):
        dag_list_update.append(list(range(dag_num,dag_num+len(dag_list[i]))))
        dag_num += len(dag_list_update[i])
        pos = 1
        for j in dag_list_update[i]:
            position[j] = (3*(i+1),pos)
            pos += 5
        max_pos = pos if pos > max_pos else max_pos
        position['Start']=(0,max_pos/2)
        position['Exit']=(3*(length+1),max_pos/2)

    ############################################link###################################################
    into_degree = [0]*args.n            
    out_degree = [0]*args.n             
    edges = []                          
    pred = 0

    for i in range(length-1):
        sample_list = list(range(len(dag_list_update[i+1])))
        for j in range(len(dag_list_update[i])):
            od = random.randrange(1,args.max_out+1,1)
            od = len(dag_list_update[i+1]) if len(dag_list_update[i+1])<od else od
            bridge = random.sample(sample_list,od)
            for k in bridge:
                edges.append((dag_list_update[i][j],dag_list_update[i+1][k]))
                into_degree[pred+len(dag_list_update[i])+k]+=1
                out_degree[pred+j]+=1 
        pred += len(dag_list_update[i])


    ######################################create start node and exit node################################
    for node,id in enumerate(into_degree):#给所有没有入边的节点添加入口节点作父亲
        if id ==0:
            edges.append(('Start',node+1))
            into_degree[node]+=1

    for node,od in enumerate(out_degree):#给所有没有出边的节点添加出口节点作儿子
        if od ==0:
            edges.append((node+1,'Exit'))
            out_degree[node]+=1

    #############################################plot##################################################
    return edges,into_degree,out_degree,position

参考

[1] [List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table](https://ieeexplore.ieee.org/abstract/document/6471969/)

[2] Building DAGs / Directed Acyclic Graphs with Python

[3] DAG Dependencies

[4] Networkx Lirbrary

[5] Python生成依赖性应用的DAG(有向无环图)拓扑

You might also like...
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Graph4nlp is the library for the easy use of Graph Neural Networks for NLP
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

Extract rooms type,  door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Owner
Livion
無限進步 Email: [email protected] Wechat: Livion2018
Livion
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 1, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 8, 2023
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/< string:word > - returns js

null 0 Jan 4, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 5, 2023
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022