AAGCN-ACSA
EMNLP 2021
Introduction
This repository was used in our paper:
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge
Bin Liang*, Hang Su*, Rongdi Yin, Lin Gui, Min Yang, Qin Zhao, Xiaoqi Yu, and Ruifeng Xu. Proceedings of EMNLP 2021
Please cite our paper and kindly give a star for this repository if you use this code.
Requirements
- Python 3.6
- PyTorch 1.0.0
- SpaCy 2.0.18
- numpy 1.15.4
Usage
- Install SpaCy package and language models with
pip install spacy
and
python -m spacy download en
- Generate aspect-focused graph with
python generate_graph_for_aspect.py
- Generate inter-aspect graph with
python generate_position_con_graph.py
Training
-
Train with command, optional arguments could be found in train.py & train_bert.py
-
Run intergcn:
./run_intergcn.sh
-
Run afgcn:
./run_afgcn.sh
-
Run intergcn_bert:
./run_intergcn_bert.sh
-
Run afgcn_bert:
./run_afgcn_bert.sh
Citation
The BibTex of the citation is as follow: