Data from "Datamodels: Predicting Predictions with Training Data"

Overview

Data from "Datamodels: Predicting Predictions with Training Data"

Here we provide the data used in the paper "Datamodels: Predicting Predictions with Training Data" (arXiv, Blog).

Note that all of the data below is stored on Amazon S3 using the “requester pays” option to avoid a blowup in our data transfer costs (we put estimated AWS costs below)---if you are on a budget and do not mind waiting a bit longer, please contact us at datamodels@mit.edu and we can try to arrange a free (but slower) transfer.

Citation

To cite this data, please use the following BibTeX entry:

@inproceedings{ilyas2022datamodels,
  title = {Datamodels: Predicting Predictions from Training Data},
  author = {Andrew Ilyas and Sung Min Park and Logan Engstrom and Guillaume Leclerc and Aleksander Madry},
  booktitle = {ArXiv preprint arXiv:2202.00622},
  year = {2022}
}

Overview

We provide the data used in our paper to analyze two image classification datasets: CIFAR-10 and (a modified version of) FMoW.

For each dataset, the data consists of two parts:

  1. Training data for datamodeling, which consists of:
    • Training subsets or "training masks", which are the independent variables of the regression tasks; and
    • Model outputs (correct-class margins and logits), which are the dependent variables of the regression tasks.
  2. Datamodels estimated from this data using LASSO.

For each dataset, there are multiple versions of the data depending on the choice of the hyperparameter α, the subsampling fraction (this is the random fraction of training examples on which each model is trained; see Section 2 of our paper for more information).

Following table shows the number of models we trained and used for estimating datamodels (also see Table 1 in paper):

Subsampling α (%) CIFAR-10 FMoW
10 1,500,000 N/A
20 750,000 375,000
50 300,000 150,000
75 600,000 300,000

Training data

For each dataset and $\alpha$, we provide the following data:

# M is the number of models trained
/{DATASET}/data/train_masks_{PCT}pct.npy  # [M x N_train] boolean
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_test] np.float16
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_train] np.float16

(The files live in the Amazon S3 bucket madrylab-datamodels; we provide instructions for acces in the next section.)

Each row of the above matrices corresponds to one instance of model trained; each column corresponds to a training or test example. CIFAR-10 examples are organized in the default order; for FMoW, see here. For example, a train mask for CIFAR-10 has the shape [M x 50,000].

For CIFAR-10, we also provide the full logits for all ten classes:

/cifar/data/train_logits_{PCT}pct.npy  # [M x N_test x 10] np.float16
/cifar/data/test_logits_{PCT}pct.npy   # [M x N_test x 10] np.float16

Note that you can also compute the margins from these logits.

We include an addtional 10,000 models for each setting that we used for evaluation; the total number of models in each matrix is M as indicated in the above table plus 10,000.

Datamodels

All estimated datamodels for each split (train or test) are provided as a dictionary in a .pt file (load with torch.load):

/{DATASET}/datamodels/train_{PCT}pct.pt
/{DATASET}/datamodels/test_{PCT}pct.pt

Each dictionary contains:

  • weight: matrix of shape N_train x N, where N is either N_train or N_test depending on the group of target examples
  • bias: vector of length N, corresponding to biases for each datamodel
  • lam: vector of length N, regularization λ chosen by CV for each datamodel

Downloading

We make all of our data available via Amazon S3. Total sizes of the training data files are as follows:

Dataset, α (%) masks, margins (GB) logits (GB)
CIFAR-10, 10 245 1688
CIFAR-10, 20 123 849
CIFAR-10, 50 49 346
CIFAR-10, 75 98 682
FMoW, 20 25.4 -
FMoW, 50 10.6 -
FMoW, 75 21.2 -

Total sizes of datamodels data (the model weights) are 16.9 GB for CIFAR-10 and 0.75 GB for FMoW.

API

You can download them using the Amazon S3 CLI interface with the requester pays option as follows (replacing the fields {...} as appropriate):

aws s3api get-object --bucket madrylab-datamodels \
                     --key {DATASET}/data/{SPLIT}_{DATA_TYPE}_{PCT}.npy \
                     --request-payer requester \
                     [OUT_FILE]

For example, to retrieve the test set margins for CIFAR-10 models trained on 50% subsets, use:

aws s3api get-object --bucket madrylab-datamodels \
                     --key cifar/data/test_margins_50pct.npy \
                     --request-payer requester \
                     test_margins_50pct.npy

Pricing

The total data transfer fee (from AWS to internet) for all of the data is around $374 (= 4155 GB x 0.09 USD per GB).

If you only download everything except for the logits (which is sufficient to reproduce all of our analysis), the fee is around $53.

Loading data

The data matrices are in numpy array format (.npy). As some of these are quite large, you can read small segments without reading the entire file into memory by additionally specifying the mmap_mode argument in np.load:

X = np.load('train_masks_10pct.npy', mmap_mode='r')
Y = np.load('test_margins_10pct.npy', mmap_mode='r')
...
# Use segments, e.g, X[:100], as appropriate
# Run regress(X, Y[:]) using choice of estimation algorithm.

FMoW data

We use a customized version of the FMoW dataset from WILDS (derived from this original dataset) that restricts the year of the training set to 2012. Our code is adapted from here.

To use the dataset, first download WILDS using:

pip install wilds

(see here for more detailed instructions).

In our paper, we only use the in-distribution training and test splits in our analysis (the original version from WILDS also has out-of-distribution as well as validation splits). Our dataset splits can be constructed as follows and used like a PyTorch dataset:

from fmow import FMoWDataset

ds = FMoWDataset(root_dir='/mnt/nfs/datasets/wilds/',
                     split_scheme='time_after_2016')

transform_steps = [
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]
transform = transforms.Compose(transform_steps)

ds_train = ds.get_subset('train', transform=transform)
ds_test = ds.get_subset('id_test', transform=transform)

The columns of matrix data described above is ordered according to the default ordering of examples given by the above constructors.

You might also like...
Visualize classified time series data with interactive Sankey plots in Google Earth Engine
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

Meerkat provides fast and flexible data structures for working with complex machine learning datasets.
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by efficient and robust IO under the hood.

This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Comments
  • Problems Accessing Data

    Problems Accessing Data

    Hey, Thank you for this very interesting work! I am having trouble accessing the data - after running: aws s3api get-object --bucket madrylab-datamodels
    --key cifar/data/test_margins_50pct.npy
    --request-payer requester
    test_margins_50pct.npy I get: An error occurred (AccessDenied) when calling the GetObject operation: Access Denied

    Any ideas how to fix this?

    opened by talswisa 3
  • Can only download data for 50 pct

    Can only download data for 50 pct

    Hey :) For some reason I can only download the datamodel weights for 50 pct with the command: aws s3 cp --request-payer requester s3://madrylab-datamodels/cifar/datamodels/train_50pct.pt .

    When changing 50 to 10/20/75 I get the error: fatal error: An error occurred (403) when calling the HeadObject operation: Forbidden

    Do you have any idea why this happens?

    opened by talswisa 2
Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 2, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

null 2.3k Jan 5, 2023
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 7, 2023
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

null 2.3k Dec 29, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 6, 2023
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 3, 2023