JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

Related tags

Deep Learning JASS
Overview

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

This the repository for this paper.

Find extensions of this work and new pre-trained models here: code, paper

Requirements

Install OpenNMT-py (1.0) and subword-nmt.

pip install OpenNMT-py
pip install subword-nmt

Pre-trained JASS models

We release JASS models on 2 language pairs: ja+en, ja+ru. For Japanese seq2seq pretraining, we use our proposed JASS methods while MASS is utilized for English and Russian.

Model Vocabulary BPE codes
JASS-jaen ja-en ja-en.bpe.codes
JASS-jaru ja-ru ja-ru.bpe.codes

Usage

Run the bpe precrocessing for the dataset to be finetuned. After setting up the downloaded vocabulary for src and tgt sentences during the preprocessing phase by preprocess.py of OpenNMT, use train_from argument of train.py in OpenNMT to implement the finetuning for the pretrained model.

Others

We will update the current Japanese--English pre-trained model and release pretrained models on Japanese--Chinese and Japanese--Korean. We released new models here: code

Reference

[1] Zhuoyuan Mao, Fabien Cromieres, Raj Dabre, Haiyue Song, Sadao Kurohashi, JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

@inproceedings{mao-etal-2020-jass,
    title = "{JASS}: {J}apanese-specific Sequence to Sequence Pre-training for Neural Machine Translation",
    author = "Mao, Zhuoyuan  and
      Cromieres, Fabien  and
      Dabre, Raj  and
      Song, Haiyue  and
      Kurohashi, Sadao",
    booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://www.aclweb.org/anthology/2020.lrec-1.454",
    pages = "3683--3691",
    language = "English",
    ISBN = "979-10-95546-34-4",
}
You might also like...
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

TAPEX: Table Pre-training via Learning a Neural SQL Executor
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Sequence to Sequence Models with PyTorch
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Comments
  • Pretrained model jp-en

    Pretrained model jp-en

    Hi, I used pretrained model with a sentence in paper https://www.aclweb.org/anthology/2020.lrec-1.454.pdf and onmt_translate -model in https://github.com/OpenNMT/OpenNMT-py, but it didn't work well https://i.imgur.com/fTNWZgM.png like the paper.

    Do I miss something?

    opened by kenziehong 2
Owner
Zhuoyuan Mao
Zhuoyuan Mao
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 1, 2023
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

null 416 Jan 9, 2023
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python >= 3.7 Pytorch

null 117 Jan 9, 2023
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

null 104 Jan 1, 2023
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-decoder model and benchmarks the combination under simulated noisy rewards.

Khanh Nguyen 131 Oct 21, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022