Static Features Classifier
This is a static features classifier for Point-Could clusters using an Attention-RNN model
Installation
$ git clone https://github.com/Mohtasib/Static_Features_Classifier.git
$ cd Static_Features_Classifier
$ conda create -n sfc_env python==3.6.10
$ conda activate sfc_env
$ pip install -e .
Example Code
You can simple run the following command to run a sample code
$ python examples/train_and_evaluate.py
Usage
1. Import Libraries:
import numpy as np
from sfc.util import create_dataset
from sfc.models.Attention_RNN import Attention_RNN
2. Define the constants:
NUM_FEATURES = ...
3. Define the directories:
DATA_PATH = ...
My_Model_Logs_DIR = ...
My_Model_Weights = My_Model_Logs_DIR + 'Best_Attention_RNN_ckpt.h5'
4. Create the dataset:
features, labels = create_dataset(DATA_PATH, NUM_FEATURES)
5. Create the model:
My_Model = Attention_RNN(Logs_DIR=My_Model_Logs_DIR)
6. Load the data into the model:
My_Model.x_train = features
My_Model.y_train = labels
My_Model.x_test = ...
My_Model.y_test = ...
7. Train the model:
My_Model.Fit()
8. Evaluate the model:
My_Model.Evaluate()
9. Predict using the model:
predictions = My_Model.Predict(data)