vision
Datasets, Transforms and Models specific to Computer Vision
Installation
- First install the nightly version of
OneFlow
python3 -m pip install oneflow -f https://staging.oneflow.info/branch/master/cu102
- Then install the latest stable release of
flowvision
pip install flowvision==0.0.4
- Or install the nightly release of
flowvision
pip install -i https://test.pypi.org/simple/ flowvision==0.0.4
Supported Model
All of the supported models can be found in our model summary page here.
Usage
Quick Start
- list supported model
from flowvision import ModelCreator
ModelCreator.model_table()
- search supported model by wildcard
from flowvision import ModelCreator
ModelCreator.model_table("*vit*", pretrained=True)
ModelCreator.model_table("*vit*", pretrained=False)
ModelCreator.model_table('alexnet')
- create model use
ModelCreator
from flowvision import ModelCreator
model = ModelCreator.create_model('alexnet', pretrained=True)
ModelCreator
- Create model in a simple way
from flowvision.models import ModelCreator
model = ModelCreator.create_model('alexnet', pretrained=True)
the pretrained weight will be saved to ./checkpoints
- Supported model table
from flowvision.models import ModelCreator
ModelCreator.model_table()
Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Pretrained ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ alexnet │ true │
│ vit_b_16_224 │ false │
│ vit_b_16_384 │ true │
│ vit_b_32_224 │ false │
│ vit_b_32_384 │ true │
│ vit_l_16_384 │ true │
│ vit_l_32_384 │ true │
└──────────────┴────────────┘
show all of the supported model in the table manner
- List models with pretrained weights
from flowvision.models import ModelCreator
ModelCreator.model_table(pretrained=True)
Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Pretrained ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ alexnet │ true │
│ vit_b_16_384 │ true │
│ vit_b_32_384 │ true │
│ vit_l_16_384 │ true │
│ vit_l_32_384 │ true │
└──────────────┴────────────┘
- Search for model by Wildcard
from flowvision.models import ModelCreator
ModelCreator.model_table('vit*')
Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Pretrained ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ vit_b_16_224 │ false │
│ vit_b_16_384 │ true │
│ vit_b_32_224 │ false │
│ vit_b_32_384 │ true │
│ vit_l_16_384 │ true │
│ vit_l_32_384 │ true │
└──────────────┴────────────┘
- Search for model with pretrained weights by Wildcard
from flowvision.models import ModelCreator
ModelCreator.model_table('vit*', pretrained=True)
Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Name ┃ Pretrained ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ vit_b_16_384 │ true │
│ vit_b_32_384 │ true │
│ vit_l_16_384 │ true │
│ vit_l_32_384 │ true │
└──────────────┴────────────┘
Model Zoo
We have conducted all the tests under the same setting, please refer to the model page here for more details.
Disclaimer on Datasets
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!