同一个代码 (用AI Studio训练MultiLabelLoss是好的,我本地训练是有问题的):
例子: https://aistudio.baidu.com/aistudio/projectdetail/4247343
训练的log截取如:
`
用AI Studio 训练MultiLabelLoss是好的如:
===========================================================
== PaddleClas is powered by PaddlePaddle ! ==
===========================================================
== ==
== For more info please go to the following website. ==
== ==
== https://github.com/PaddlePaddle/PaddleClas ==
===========================================================
[2022/07/16 17:07:52] ppcls INFO: Arch :
[2022/07/16 17:07:52] ppcls INFO: class_num : 33
[2022/07/16 17:07:52] ppcls INFO: name : MobileNetV1
[2022/07/16 17:07:52] ppcls INFO: pretrained : True
[2022/07/16 17:07:52] ppcls INFO: DataLoader :
[2022/07/16 17:07:52] ppcls INFO: Eval :
[2022/07/16 17:07:52] ppcls INFO: dataset :
[2022/07/16 17:07:52] ppcls INFO: cls_label_path : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt
[2022/07/16 17:07:52] ppcls INFO: image_root : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
[2022/07/16 17:07:52] ppcls INFO: name : MultiLabelDataset
[2022/07/16 17:07:52] ppcls INFO: transform_ops :
[2022/07/16 17:07:52] ppcls INFO: DecodeImage :
[2022/07/16 17:07:52] ppcls INFO: channel_first : False
[2022/07/16 17:07:52] ppcls INFO: to_rgb : True
[2022/07/16 17:07:52] ppcls INFO: ResizeImage :
[2022/07/16 17:07:52] ppcls INFO: resize_short : 256
[2022/07/16 17:07:52] ppcls INFO: CropImage :
[2022/07/16 17:07:52] ppcls INFO: size : 224
[2022/07/16 17:07:52] ppcls INFO: NormalizeImage :
[2022/07/16 17:07:52] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/16 17:07:52] ppcls INFO: order :
[2022/07/16 17:07:52] ppcls INFO: scale : 1.0/255.0
[2022/07/16 17:07:52] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/16 17:07:52] ppcls INFO: loader :
[2022/07/16 17:07:52] ppcls INFO: num_workers : 4
[2022/07/16 17:07:52] ppcls INFO: use_shared_memory : True
[2022/07/16 17:07:52] ppcls INFO: sampler :
[2022/07/16 17:07:52] ppcls INFO: batch_size : 256
[2022/07/16 17:07:52] ppcls INFO: drop_last : False
[2022/07/16 17:07:52] ppcls INFO: name : DistributedBatchSampler
[2022/07/16 17:07:52] ppcls INFO: shuffle : False
[2022/07/16 17:07:52] ppcls INFO: Train :
[2022/07/16 17:07:52] ppcls INFO: dataset :
[2022/07/16 17:07:52] ppcls INFO: cls_label_path : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt
[2022/07/16 17:07:52] ppcls INFO: image_root : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
[2022/07/16 17:07:52] ppcls INFO: name : MultiLabelDataset
[2022/07/16 17:07:52] ppcls INFO: transform_ops :
[2022/07/16 17:07:52] ppcls INFO: DecodeImage :
[2022/07/16 17:07:52] ppcls INFO: channel_first : False
[2022/07/16 17:07:52] ppcls INFO: to_rgb : True
[2022/07/16 17:07:52] ppcls INFO: RandCropImage :
[2022/07/16 17:07:52] ppcls INFO: size : 224
[2022/07/16 17:07:52] ppcls INFO: RandFlipImage :
[2022/07/16 17:07:52] ppcls INFO: flip_code : 1
[2022/07/16 17:07:52] ppcls INFO: NormalizeImage :
[2022/07/16 17:07:52] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/16 17:07:52] ppcls INFO: order :
[2022/07/16 17:07:52] ppcls INFO: scale : 1.0/255.0
[2022/07/16 17:07:52] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/16 17:07:52] ppcls INFO: loader :
[2022/07/16 17:07:52] ppcls INFO: num_workers : 4
[2022/07/16 17:07:52] ppcls INFO: use_shared_memory : True
[2022/07/16 17:07:52] ppcls INFO: sampler :
[2022/07/16 17:07:52] ppcls INFO: batch_size : 64
[2022/07/16 17:07:52] ppcls INFO: drop_last : False
[2022/07/16 17:07:52] ppcls INFO: name : DistributedBatchSampler
[2022/07/16 17:07:52] ppcls INFO: shuffle : True
[2022/07/16 17:07:52] ppcls INFO: Global :
[2022/07/16 17:07:52] ppcls INFO: checkpoints : None
[2022/07/16 17:07:52] ppcls INFO: device : gpu
[2022/07/16 17:07:52] ppcls INFO: epochs : 10
[2022/07/16 17:07:52] ppcls INFO: eval_during_train : True
[2022/07/16 17:07:52] ppcls INFO: eval_interval : 1
[2022/07/16 17:07:52] ppcls INFO: image_shape : [3, 224, 224]
[2022/07/16 17:07:52] ppcls INFO: output_dir : ./output/
[2022/07/16 17:07:52] ppcls INFO: pretrained_model : None
[2022/07/16 17:07:52] ppcls INFO: print_batch_step : 10
[2022/07/16 17:07:52] ppcls INFO: save_inference_dir : ./inference
[2022/07/16 17:07:52] ppcls INFO: save_interval : 1
[2022/07/16 17:07:52] ppcls INFO: use_multilabel : True
[2022/07/16 17:07:52] ppcls INFO: use_visualdl : False
[2022/07/16 17:07:52] ppcls INFO: Infer :
[2022/07/16 17:07:52] ppcls INFO: PostProcess :
[2022/07/16 17:07:52] ppcls INFO: class_id_map_file : None
[2022/07/16 17:07:52] ppcls INFO: name : MultiLabelTopk
[2022/07/16 17:07:52] ppcls INFO: topk : 5
[2022/07/16 17:07:52] ppcls INFO: batch_size : 10
[2022/07/16 17:07:52] ppcls INFO: infer_imgs : ./deploy/images/0517_2715693311.jpg
[2022/07/16 17:07:52] ppcls INFO: transforms :
[2022/07/16 17:07:52] ppcls INFO: DecodeImage :
[2022/07/16 17:07:52] ppcls INFO: channel_first : False
[2022/07/16 17:07:52] ppcls INFO: to_rgb : True
[2022/07/16 17:07:52] ppcls INFO: ResizeImage :
[2022/07/16 17:07:52] ppcls INFO: resize_short : 256
[2022/07/16 17:07:52] ppcls INFO: CropImage :
[2022/07/16 17:07:52] ppcls INFO: size : 224
[2022/07/16 17:07:52] ppcls INFO: NormalizeImage :
[2022/07/16 17:07:52] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/16 17:07:52] ppcls INFO: order :
[2022/07/16 17:07:52] ppcls INFO: scale : 1.0/255.0
[2022/07/16 17:07:52] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/16 17:07:52] ppcls INFO: ToCHWImage : None
[2022/07/16 17:07:52] ppcls INFO: Loss :
[2022/07/16 17:07:52] ppcls INFO: Eval :
[2022/07/16 17:07:52] ppcls INFO: MultiLabelLoss :
[2022/07/16 17:07:52] ppcls INFO: weight : 1.0
[2022/07/16 17:07:52] ppcls INFO: Train :
[2022/07/16 17:07:52] ppcls INFO: MultiLabelLoss :
[2022/07/16 17:07:52] ppcls INFO: weight : 1.0
[2022/07/16 17:07:52] ppcls INFO: Metric :
[2022/07/16 17:07:52] ppcls INFO: Eval :
[2022/07/16 17:07:52] ppcls INFO: HammingDistance : None
[2022/07/16 17:07:52] ppcls INFO: AccuracyScore : None
[2022/07/16 17:07:52] ppcls INFO: Train :
[2022/07/16 17:07:52] ppcls INFO: HammingDistance : None
[2022/07/16 17:07:52] ppcls INFO: AccuracyScore : None
[2022/07/16 17:07:52] ppcls INFO: Optimizer :
[2022/07/16 17:07:52] ppcls INFO: lr :
[2022/07/16 17:07:52] ppcls INFO: learning_rate : 0.1
[2022/07/16 17:07:52] ppcls INFO: name : Cosine
[2022/07/16 17:07:52] ppcls INFO: momentum : 0.9
[2022/07/16 17:07:52] ppcls INFO: name : Momentum
[2022/07/16 17:07:52] ppcls INFO: regularizer :
[2022/07/16 17:07:52] ppcls INFO: coeff : 4e-05
[2022/07/16 17:07:52] ppcls INFO: name : L2
[2022/07/16 17:07:52] ppcls INFO: profiler_options : None
[2022/07/16 17:07:52] ppcls INFO: train with paddle 2.3.0 and device Place(gpu:0)
[2022/07/16 17:07:57] ppcls INFO: unique_endpoints {''}
[2022/07/16 17:07:57] ppcls INFO: Downloading MobileNetV1_pretrained.pdparams from https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams
[2022/07/16 17:07:59] ppcls WARNING: The training strategy provided by PaddleClas is based on 4 gpus. But the number of gpu is 1 in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train.
[2022/07/16 17:08:01] ppcls INFO: [Train][Epoch 1/10][Iter: 0/273]lr(CosineAnnealingDecay): 0.09999993, HammingDistance: 0.49716, AccuracyScore: 0.50284, MultiLabelLoss: 0.85628, loss: 0.85628, batch_cost: 1.44437s, reader_cost: 1.23644, ips: 44.31011 samples/s, eta: 1:05:43
[2022/07/16 17:08:02] ppcls INFO: [Train][Epoch 1/10][Iter: 10/273]lr(CosineAnnealingDecay): 0.09999530, HammingDistance: 0.15526, AccuracyScore: 0.84474, MultiLabelLoss: 0.37622, loss: 0.37622, batch_cost: 0.10000s, reader_cost: 0.00025, ips: 640.00290 samples/s, eta: 0:04:31
[2022/07/16 17:08:03] ppcls INFO: [Train][Epoch 1/10][Iter: 20/273]lr(CosineAnnealingDecay): 0.09998404, HammingDistance: 0.11718, AccuracyScore: 0.88282, MultiLabelLoss: 0.32476, loss: 0.32476, batch_cost: 0.11404s, reader_cost: 0.00106, ips: 561.19280 samples/s, eta: 0:05:09
[2022/07/16 17:08:04] ppcls INFO: [Train][Epoch 1/10][Iter: 30/273]lr(CosineAnnealingDecay): 0.09996617, HammingDistance: 0.10278, AccuracyScore: 0.89722, MultiLabelLoss: 0.29221, loss: 0.29221, batch_cost: 0.12300s, reader_cost: 0.00443, ips: 520.30787 samples/s, eta: 0:05:32
[2022/07/16 17:08:05] ppcls INFO: [Train][Epoch 1/10][Iter: 40/273]lr(CosineAnnealingDecay): 0.09994168, HammingDistance: 0.09368, AccuracyScore: 0.90632, MultiLabelLoss: 0.27051, loss: 0.27051, batch_cost: 0.12503s, reader_cost: 0.00764, ips: 511.86440 samples/s, eta: 0:05:36
[2022/07/16 17:08:07] ppcls INFO: [Train][Epoch 1/10][Iter: 50/273]lr(CosineAnnealingDecay): 0.09991057, HammingDistance: 0.08857, AccuracyScore: 0.91143, MultiLabelLoss: 0.25566, loss: 0.25566, batch_cost: 0.12603s, reader_cost: 0.00750, ips: 507.79879 samples/s, eta: 0:05:37
[2022/07/16 17:08:08] ppcls INFO: [Train][Epoch 1/10][Iter: 60/273]lr(CosineAnnealingDecay): 0.09987286, HammingDistance: 0.08468, AccuracyScore: 0.91532, MultiLabelLoss: 0.24471, loss: 0.24471, batch_cost: 0.13030s, reader_cost: 0.00920, ips: 491.16795 samples/s, eta: 0:05:47
[2022/07/16 17:08:10] ppcls INFO: [Train][Epoch 1/10][Iter: 70/273]lr(CosineAnnealingDecay): 0.09982854, HammingDistance: 0.08121, AccuracyScore: 0.91879, MultiLabelLoss: 0.23447, loss: 0.23447, batch_cost: 0.13031s, reader_cost: 0.00969, ips: 491.11827 samples/s, eta: 0:05:46
[2022/07/16 17:08:12] ppcls INFO: [Train][Epoch 1/10][Iter: 80/273]lr(CosineAnnealingDecay): 0.09977762, HammingDistance: 0.07914, AccuracyScore: 0.92086, MultiLabelLoss: 0.22757, loss: 0.22757, batch_cost: 0.14074s, reader_cost: 0.01000, ips: 454.72867 samples/s, eta: 0:06:12
[2022/07/16 17:08:14] ppcls INFO: [Train][Epoch 1/10][Iter: 90/273]lr(CosineAnnealingDecay): 0.09972011, HammingDistance: 0.07785, AccuracyScore: 0.92215, MultiLabelLoss: 0.22251, loss: 0.22251, batch_cost: 0.14647s, reader_cost: 0.00899, ips: 436.95943 samples/s, eta: 0:06:26
[2022/07/16 17:08:15] ppcls INFO: [Train][Epoch 1/10][Iter: 100/273]lr(CosineAnnealingDecay): 0.09965602, HammingDistance: 0.07627, AccuracyScore: 0.92373, MultiLabelLoss: 0.21681, loss: 0.21681, batch_cost: 0.14683s, reader_cost: 0.01051, ips: 435.88615 samples/s, eta: 0:06:26
[2022/07/16 17:08:16] ppcls INFO: [Train][Epoch 1/10][Iter: 110/273]lr(CosineAnnealingDecay): 0.09958535, HammingDistance: 0.07491, AccuracyScore: 0.92509, MultiLabelLoss: 0.21235, loss: 0.21235, batch_cost: 0.14429s, reader_cost: 0.01024, ips: 443.54869 samples/s, eta: 0:06:18
[2022/07/16 17:08:18] ppcls INFO: [Train][Epoch 1/10][Iter: 120/273]lr(CosineAnnealingDecay): 0.09950812, HammingDistance: 0.07390, AccuracyScore: 0.92610, MultiLabelLoss: 0.20877, loss: 0.20877, batch_cost: 0.14396s, reader_cost: 0.01148, ips: 444.55331 samples/s, eta: 0:06:15
[2022/07/16 17:08:19] ppcls INFO: [Train][Epoch 1/10][Iter: 130/273]lr(CosineAnnealingDecay): 0.09942433, HammingDistance: 0.07272, AccuracyScore: 0.92728, MultiLabelLoss: 0.20525, loss: 0.20525, batch_cost: 0.14281s, reader_cost: 0.01087, ips: 448.14375 samples/s, eta: 0:06:11
[2022/07/16 17:08:20] ppcls INFO: [Train][Epoch 1/10][Iter: 140/273]lr(CosineAnnealingDecay): 0.09933399, HammingDistance: 0.07197, AccuracyScore: 0.92803, MultiLabelLoss: 0.20234, loss: 0.20234, batch_cost: 0.14260s, reader_cost: 0.01128, ips: 448.80568 samples/s, eta: 0:06:09
[2022/07/16 17:08:22] ppcls INFO: [Train][Epoch 1/10][Iter: 150/273]lr(CosineAnnealingDecay): 0.09923712, HammingDistance: 0.07122, AccuracyScore: 0.92878, MultiLabelLoss: 0.19955, loss: 0.19955, batch_cost: 0.14106s, reader_cost: 0.01144, ips: 453.69443 samples/s, eta: 0:06:03
[2022/07/16 17:08:23] ppcls INFO: [Train][Epoch 1/10][Iter: 160/273]lr(CosineAnnealingDecay): 0.09913373, HammingDistance: 0.07050, AccuracyScore: 0.92950, MultiLabelLoss: 0.19703, loss: 0.19703, batch_cost: 0.14162s, reader_cost: 0.01223, ips: 451.90739 samples/s, eta: 0:06:03
[2022/07/16 17:08:24] ppcls INFO: [Train][Epoch 1/10][Iter: 170/273]lr(CosineAnnealingDecay): 0.09902383, HammingDistance: 0.06968, AccuracyScore: 0.93032, MultiLabelLoss: 0.19439, loss: 0.19439, batch_cost: 0.14092s, reader_cost: 0.01232, ips: 454.16743 samples/s, eta: 0:06:00
[2022/07/16 17:08:26] ppcls INFO: [Train][Epoch 1/10][Iter: 180/273]lr(CosineAnnealingDecay): 0.09890745, HammingDistance: 0.06891, AccuracyScore: 0.93109, MultiLabelLoss: 0.19201, loss: 0.19201, batch_cost: 0.14031s, reader_cost: 0.01235, ips: 456.12892 samples/s, eta: 0:05:57
[2022/07/16 17:08:27] ppcls INFO: [Train][Epoch 1/10][Iter: 190/273]lr(CosineAnnealingDecay): 0.09878458, HammingDistance: 0.06841, AccuracyScore: 0.93159, MultiLabelLoss: 0.19022, loss: 0.19022, batch_cost: 0.14028s, reader_cost: 0.01253, ips: 456.23303 samples/s, eta: 0:05:56
[2022/07/16 17:08:28] ppcls INFO: [Train][Epoch 1/10][Iter: 200/273]lr(CosineAnnealingDecay): 0.09865526, HammingDistance: 0.06789, AccuracyScore: 0.93211, MultiLabelLoss: 0.18832, loss: 0.18832, batch_cost: 0.13975s, reader_cost: 0.01238, ips: 457.94703 samples/s, eta: 0:05:53
[2022/07/16 17:08:30] ppcls INFO: [Train][Epoch 1/10][Iter: 210/273]lr(CosineAnnealingDecay): 0.09851949, HammingDistance: 0.06747, AccuracyScore: 0.93253, MultiLabelLoss: 0.18667, loss: 0.18667, batch_cost: 0.13930s, reader_cost: 0.01244, ips: 459.45184 samples/s, eta: 0:05:51
[2022/07/16 17:08:31] ppcls INFO: [Train][Epoch 1/10][Iter: 220/273]lr(CosineAnnealingDecay): 0.09837730, HammingDistance: 0.06700, AccuracyScore: 0.93300, MultiLabelLoss: 0.18511, loss: 0.18511, batch_cost: 0.13931s, reader_cost: 0.01251, ips: 459.40462 samples/s, eta: 0:05:49
[2022/07/16 17:08:32] ppcls INFO: [Train][Epoch 1/10][Iter: 230/273]lr(CosineAnnealingDecay): 0.09822870, HammingDistance: 0.06672, AccuracyScore: 0.93328, MultiLabelLoss: 0.18408, loss: 0.18408, batch_cost: 0.13934s, reader_cost: 0.01277, ips: 459.31651 samples/s, eta: 0:05:48
[2022/07/16 17:08:34] ppcls INFO: [Train][Epoch 1/10][Iter: 240/273]lr(CosineAnnealingDecay): 0.09807371, HammingDistance: 0.06645, AccuracyScore: 0.93355, MultiLabelLoss: 0.18297, loss: 0.18297, batch_cost: 0.13894s, reader_cost: 0.01266, ips: 460.61978 samples/s, eta: 0:05:45
[2022/07/16 17:08:35] ppcls INFO: [Train][Epoch 1/10][Iter: 250/273]lr(CosineAnnealingDecay): 0.09791236, HammingDistance: 0.06608, AccuracyScore: 0.93392, MultiLabelLoss: 0.18163, loss: 0.18163, batch_cost: 0.13939s, reader_cost: 0.01296, ips: 459.14592 samples/s, eta: 0:05:45
[2022/07/16 17:08:36] ppcls INFO: [Train][Epoch 1/10][Iter: 260/273]lr(CosineAnnealingDecay): 0.09774466, HammingDistance: 0.06579, AccuracyScore: 0.93421, MultiLabelLoss: 0.18057, loss: 0.18057, batch_cost: 0.13863s, reader_cost: 0.01254, ips: 461.66447 samples/s, eta: 0:05:42
[2022/07/16 17:08:38] ppcls INFO: [Train][Epoch 1/10][Iter: 270/273]lr(CosineAnnealingDecay): 0.09757064, HammingDistance: 0.06547, AccuracyScore: 0.93453, MultiLabelLoss: 0.17950, loss: 0.17950, batch_cost: 0.13838s, reader_cost: 0.01274, ips: 462.49553 samples/s, eta: 0:05:40
[2022/07/16 17:08:38] ppcls INFO: [Train][Epoch 1/10][Avg]HammingDistance: 0.06545, AccuracyScore: 0.93455, MultiLabelLoss: 0.17936, loss: 0.17936
[2022/07/16 17:08:42] ppcls INFO: [Eval][Epoch 1][Iter: 0/69]MultiLabelLoss: 0.11665, loss: 0.11665, HammingDistance: 0.04013, AccuracyScore: 0.95987, batch_cost: 3.60435s, reader_cost: 3.00752, ips: 71.02521 images/sec
我 本地 训练MultiLabelLoss是有问题的如:
===========================================================
== PaddleClas is powered by PaddlePaddle ! ==
===========================================================
== ==
== For more info please go to the following website. ==
== ==
== https://github.com/PaddlePaddle/PaddleClas ==
===========================================================
[2022/07/18 09:40:48] ppcls INFO: Arch :
[2022/07/18 09:40:48] ppcls INFO: class_num : 33
[2022/07/18 09:40:48] ppcls INFO: name : MobileNetV1
[2022/07/18 09:40:48] ppcls INFO: pretrained : True
[2022/07/18 09:40:48] ppcls INFO: DataLoader :
[2022/07/18 09:40:48] ppcls INFO: Eval :
[2022/07/18 09:40:48] ppcls INFO: dataset :
[2022/07/18 09:40:48] ppcls INFO: cls_label_path : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt
[2022/07/18 09:40:48] ppcls INFO: image_root : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
[2022/07/18 09:40:48] ppcls INFO: name : MultiLabelDataset
[2022/07/18 09:40:48] ppcls INFO: transform_ops :
[2022/07/18 09:40:48] ppcls INFO: DecodeImage :
[2022/07/18 09:40:48] ppcls INFO: channel_first : False
[2022/07/18 09:40:48] ppcls INFO: to_rgb : True
[2022/07/18 09:40:48] ppcls INFO: ResizeImage :
[2022/07/18 09:40:48] ppcls INFO: resize_short : 256
[2022/07/18 09:40:48] ppcls INFO: CropImage :
[2022/07/18 09:40:48] ppcls INFO: size : 224
[2022/07/18 09:40:48] ppcls INFO: NormalizeImage :
[2022/07/18 09:40:48] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/18 09:40:48] ppcls INFO: order :
[2022/07/18 09:40:48] ppcls INFO: scale : 1.0/255.0
[2022/07/18 09:40:48] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/18 09:40:48] ppcls INFO: loader :
[2022/07/18 09:40:48] ppcls INFO: num_workers : 4
[2022/07/18 09:40:48] ppcls INFO: use_shared_memory : True
[2022/07/18 09:40:48] ppcls INFO: sampler :
[2022/07/18 09:40:48] ppcls INFO: batch_size : 256
[2022/07/18 09:40:48] ppcls INFO: drop_last : False
[2022/07/18 09:40:48] ppcls INFO: name : DistributedBatchSampler
[2022/07/18 09:40:48] ppcls INFO: shuffle : False
[2022/07/18 09:40:48] ppcls INFO: Train :
[2022/07/18 09:40:48] ppcls INFO: dataset :
[2022/07/18 09:40:48] ppcls INFO: cls_label_path : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt
[2022/07/18 09:40:48] ppcls INFO: image_root : ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
[2022/07/18 09:40:48] ppcls INFO: name : MultiLabelDataset
[2022/07/18 09:40:48] ppcls INFO: transform_ops :
[2022/07/18 09:40:48] ppcls INFO: DecodeImage :
[2022/07/18 09:40:48] ppcls INFO: channel_first : False
[2022/07/18 09:40:48] ppcls INFO: to_rgb : True
[2022/07/18 09:40:48] ppcls INFO: RandCropImage :
[2022/07/18 09:40:48] ppcls INFO: size : 224
[2022/07/18 09:40:48] ppcls INFO: RandFlipImage :
[2022/07/18 09:40:48] ppcls INFO: flip_code : 1
[2022/07/18 09:40:48] ppcls INFO: NormalizeImage :
[2022/07/18 09:40:48] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/18 09:40:48] ppcls INFO: order :
[2022/07/18 09:40:48] ppcls INFO: scale : 1.0/255.0
[2022/07/18 09:40:48] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/18 09:40:48] ppcls INFO: loader :
[2022/07/18 09:40:48] ppcls INFO: num_workers : 4
[2022/07/18 09:40:48] ppcls INFO: use_shared_memory : True
[2022/07/18 09:40:48] ppcls INFO: sampler :
[2022/07/18 09:40:48] ppcls INFO: batch_size : 64
[2022/07/18 09:40:48] ppcls INFO: drop_last : False
[2022/07/18 09:40:48] ppcls INFO: name : DistributedBatchSampler
[2022/07/18 09:40:48] ppcls INFO: shuffle : True
[2022/07/18 09:40:48] ppcls INFO: Global :
[2022/07/18 09:40:48] ppcls INFO: checkpoints : None
[2022/07/18 09:40:48] ppcls INFO: device : gpu
[2022/07/18 09:40:48] ppcls INFO: epochs : 10
[2022/07/18 09:40:48] ppcls INFO: eval_during_train : True
[2022/07/18 09:40:48] ppcls INFO: eval_interval : 1
[2022/07/18 09:40:48] ppcls INFO: image_shape : [3, 224, 224]
[2022/07/18 09:40:48] ppcls INFO: output_dir : ./output/
[2022/07/18 09:40:48] ppcls INFO: pretrained_model : None
[2022/07/18 09:40:48] ppcls INFO: print_batch_step : 10
[2022/07/18 09:40:48] ppcls INFO: save_inference_dir : ./inference
[2022/07/18 09:40:48] ppcls INFO: save_interval : 1
[2022/07/18 09:40:48] ppcls INFO: use_multilabel : True
[2022/07/18 09:40:48] ppcls INFO: use_visualdl : False
[2022/07/18 09:40:48] ppcls INFO: Infer :
[2022/07/18 09:40:48] ppcls INFO: PostProcess :
[2022/07/18 09:40:48] ppcls INFO: class_id_map_file : None
[2022/07/18 09:40:48] ppcls INFO: name : MultiLabelTopk
[2022/07/18 09:40:48] ppcls INFO: topk : 5
[2022/07/18 09:40:48] ppcls INFO: batch_size : 10
[2022/07/18 09:40:48] ppcls INFO: infer_imgs : ./deploy/images/0517_2715693311.jpg
[2022/07/18 09:40:48] ppcls INFO: transforms :
[2022/07/18 09:40:48] ppcls INFO: DecodeImage :
[2022/07/18 09:40:48] ppcls INFO: channel_first : False
[2022/07/18 09:40:48] ppcls INFO: to_rgb : True
[2022/07/18 09:40:48] ppcls INFO: ResizeImage :
[2022/07/18 09:40:48] ppcls INFO: resize_short : 256
[2022/07/18 09:40:48] ppcls INFO: CropImage :
[2022/07/18 09:40:48] ppcls INFO: size : 224
[2022/07/18 09:40:48] ppcls INFO: NormalizeImage :
[2022/07/18 09:40:48] ppcls INFO: mean : [0.485, 0.456, 0.406]
[2022/07/18 09:40:48] ppcls INFO: order :
[2022/07/18 09:40:48] ppcls INFO: scale : 1.0/255.0
[2022/07/18 09:40:48] ppcls INFO: std : [0.229, 0.224, 0.225]
[2022/07/18 09:40:48] ppcls INFO: ToCHWImage : None
[2022/07/18 09:40:48] ppcls INFO: Loss :
[2022/07/18 09:40:48] ppcls INFO: Eval :
[2022/07/18 09:40:48] ppcls INFO: MultiLabelLoss :
[2022/07/18 09:40:48] ppcls INFO: weight : 1.0
[2022/07/18 09:40:48] ppcls INFO: Train :
[2022/07/18 09:40:48] ppcls INFO: MultiLabelLoss :
[2022/07/18 09:40:48] ppcls INFO: weight : 1.0
[2022/07/18 09:40:48] ppcls INFO: Metric :
[2022/07/18 09:40:48] ppcls INFO: Eval :
[2022/07/18 09:40:48] ppcls INFO: HammingDistance : None
[2022/07/18 09:40:48] ppcls INFO: AccuracyScore : None
[2022/07/18 09:40:48] ppcls INFO: Train :
[2022/07/18 09:40:48] ppcls INFO: HammingDistance : None
[2022/07/18 09:40:48] ppcls INFO: AccuracyScore : None
[2022/07/18 09:40:48] ppcls INFO: Optimizer :
[2022/07/18 09:40:48] ppcls INFO: lr :
[2022/07/18 09:40:48] ppcls INFO: learning_rate : 0.1
[2022/07/18 09:40:48] ppcls INFO: name : Cosine
[2022/07/18 09:40:48] ppcls INFO: momentum : 0.9
[2022/07/18 09:40:48] ppcls INFO: name : Momentum
[2022/07/18 09:40:48] ppcls INFO: regularizer :
[2022/07/18 09:40:48] ppcls INFO: coeff : 4e-05
[2022/07/18 09:40:48] ppcls INFO: name : L2
[2022/07/18 09:40:48] ppcls INFO: profiler_options : None
[2022/07/18 09:40:48] ppcls INFO: train with paddle 2.3.0 and device Place(gpu:0)
[2022/07/18 09:40:55] ppcls INFO: unique_endpoints {''}
[2022/07/18 09:40:55] ppcls INFO: Found C:\Users\Administrator/.paddleclas/weights\MobileNetV1_pretrained.pdparams
[2022/07/18 09:40:55] ppcls WARNING: The training strategy provided by PaddleClas is based on 4 gpus. But the number of gpu is 1 in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train.
[2022/07/18 09:40:57] ppcls INFO: [Train][Epoch 1/10][Iter: 0/273]lr(CosineAnnealingDecay): 0.09999993, HammingDistance: 0.78883, AccuracyScore: 0.20360, MultiLabelLoss: 0.00000, loss: 0.00000, batch_cost: 1.35928s, reader_cost: 0.35935, ips: 47.08391 samples/s, eta: 1:01:50
[2022/07/18 09:41:01] ppcls INFO: [Train][Epoch 1/10][Iter: 10/273]lr(CosineAnnealingDecay): 0.09999530, HammingDistance: 0.36359, AccuracyScore: 0.63572, MultiLabelLoss: 15540.73622, loss: 15540.73622, batch_cost: 0.47913s, reader_cost: 0.13281, ips: 133.57495 samples/s, eta: 0:21:43
[2022/07/18 09:41:06] ppcls INFO: [Train][Epoch 1/10][Iter: 20/273]lr(CosineAnnealingDecay): 0.09998404, HammingDistance: 0.38591, AccuracyScore: 0.61373, MultiLabelLoss: 36724.26478, loss: 36724.26478, batch_cost: 0.49703s, reader_cost: 0.14355, ips: 128.76380 samples/s, eta: 0:22:26
[2022/07/18 09:41:11] ppcls INFO: [Train][Epoch 1/10][Iter: 30/273]lr(CosineAnnealingDecay): 0.09996617, HammingDistance: 0.37392, AccuracyScore: 0.62584, MultiLabelLoss: 24898.26703, loss: 24898.26703, batch_cost: 0.49876s, reader_cost: 0.14542, ips: 128.31781 samples/s, eta: 0:22:26
[2022/07/18 09:41:23] ppcls INFO: [Train][Epoch 1/10][Iter: 40/273]lr(CosineAnnealingDecay): 0.09994168, HammingDistance: 0.39181, AccuracyScore: 0.60800, MultiLabelLoss: -92611.72725, loss: -92611.72725, batch_cost: 0.46481s, reader_cost: 0.10980, ips: 137.69074 samples/s, eta: 0:20:50
[2022/07/18 09:41:28] ppcls INFO: [Train][Epoch 1/10][Iter: 50/273]lr(CosineAnnealingDecay): 0.09991057, HammingDistance: 0.38774, AccuracyScore: 0.61211, MultiLabelLoss: -50456.68341, loss: -50456.68341, batch_cost: 0.46702s, reader_cost: 0.11344, ips: 137.03984 samples/s, eta: 0:20:51
[2022/07/18 09:41:33] ppcls INFO: [Train][Epoch 1/10][Iter: 60/273]lr(CosineAnnealingDecay): 0.09987286, HammingDistance: 0.38567, AccuracyScore: 0.61421, MultiLabelLoss: -22486.64255, loss: -22486.64255, batch_cost: 0.46899s, reader_cost: 0.11690, ips: 136.46209 samples/s, eta: 0:20:52
[2022/07/18 09:41:37] ppcls INFO: [Train][Epoch 1/10][Iter: 70/273]lr(CosineAnnealingDecay): 0.09982854, HammingDistance: 0.38313, AccuracyScore: 0.61676, MultiLabelLoss: -19252.86648, loss: -19252.86648, batch_cost: 0.46990s, reader_cost: 0.11836, ips: 136.19938 samples/s, eta: 0:20:49
[2022/07/18 09:41:42] ppcls INFO: [Train][Epoch 1/10][Iter: 80/273]lr(CosineAnnealingDecay): 0.09977762, HammingDistance: 0.39454, AccuracyScore: 0.60536, MultiLabelLoss: -16924.69063, loss: -16924.69063, batch_cost: 0.47057s, reader_cost: 0.11924, ips: 136.00645 samples/s, eta: 0:20:46
[2022/07/18 09:41:47] ppcls INFO: [Train][Epoch 1/10][Iter: 90/273]lr(CosineAnnealingDecay): 0.09972011, HammingDistance: 0.39503, AccuracyScore: 0.60489, MultiLabelLoss: 349381514.77505, loss: 349381514.77505, batch_cost: 0.47108s, reader_cost: 0.12027, ips: 135.85876 samples/s, eta: 0:20:43
[2022/07/18 09:41:52] ppcls INFO: [Train][Epoch 1/10][Iter: 100/273]lr(CosineAnnealingDecay): 0.09965602, HammingDistance: 0.39561, AccuracyScore: 0.60431, MultiLabelLoss: 314791201.08847, loss: 314791201.08847, batch_cost: 0.47132s, reader_cost: 0.12060, ips: 135.78894 samples/s, eta: 0:20:39
[2022/07/18 09:41:56] ppcls INFO: [Train][Epoch 1/10][Iter: 110/273]lr(CosineAnnealingDecay): 0.09958535, HammingDistance: 0.39322, AccuracyScore: 0.60671, MultiLabelLoss: 286436854.72710, loss: 286436854.72710, batch_cost: 0.47196s, reader_cost: 0.12160, ips: 135.60517 samples/s, eta: 0:20:36
[2022/07/18 09:42:01] ppcls INFO: [Train][Epoch 1/10][Iter: 120/273]lr(CosineAnnealingDecay): 0.09950812, HammingDistance: 0.38938, AccuracyScore: 0.61056, MultiLabelLoss: 266475598.22907, loss: 266475598.22907, batch_cost: 0.47222s, reader_cost: 0.12176, ips: 135.53073 samples/s, eta: 0:20:32
[2022/07/18 09:42:06] ppcls INFO: [Train][Epoch 1/10][Iter: 130/273]lr(CosineAnnealingDecay): 0.09942433, HammingDistance: 0.39447, AccuracyScore: 0.60547, MultiLabelLoss: 246135450.44263, loss: 246135450.44263, batch_cost: 0.47256s, reader_cost: 0.12227, ips: 135.43263 samples/s, eta: 0:20:28
[2022/07/18 09:42:11] ppcls INFO: [Train][Epoch 1/10][Iter: 140/273]lr(CosineAnnealingDecay): 0.09933399, HammingDistance: 0.39562, AccuracyScore: 0.60433, MultiLabelLoss: 228682885.43340, loss: 228682885.43340, batch_cost: 0.47297s, reader_cost: 0.12293, ips: 135.31618 samples/s, eta: 0:20:24
[2022/07/18 09:42:15] ppcls INFO: [Train][Epoch 1/10][Iter: 150/273]lr(CosineAnnealingDecay): 0.09923712, HammingDistance: 0.39547, AccuracyScore: 0.60448, MultiLabelLoss: 213542288.18181, loss: 213542288.18181, batch_cost: 0.47321s, reader_cost: 0.12339, ips: 135.24643 samples/s, eta: 0:20:20
[2022/07/18 09:42:20] ppcls INFO: [Train][Epoch 1/10][Iter: 160/273]lr(CosineAnnealingDecay): 0.09913373, HammingDistance: 0.39550, AccuracyScore: 0.60446, MultiLabelLoss: 200279231.33699, loss: 200279231.33699, batch_cost: 0.47362s, reader_cost: 0.12389, ips: 135.12851 samples/s, eta: 0:20:17
[2022/07/18 09:42:25] ppcls INFO: [Train][Epoch 1/10][Iter: 170/273]lr(CosineAnnealingDecay): 0.09902383, HammingDistance: 0.39739, AccuracyScore: 0.60257, MultiLabelLoss: 400101751.08385, loss: 400101751.08385, batch_cost: 0.47380s, reader_cost: 0.12424, ips: 135.07861 samples/s, eta: 0:20:12
[2022/07/18 09:42:30] ppcls INFO: [Train][Epoch 1/10][Iter: 180/273]lr(CosineAnnealingDecay): 0.09890745, HammingDistance: 0.39598, AccuracyScore: 0.60398, MultiLabelLoss: 378067441.94226, loss: 378067441.94226, batch_cost: 0.47395s, reader_cost: 0.12437, ips: 135.03441 samples/s, eta: 0:20:08
[2022/07/18 09:42:35] ppcls INFO: [Train][Epoch 1/10][Iter: 190/273]lr(CosineAnnealingDecay): 0.09878458, HammingDistance: 0.39366, AccuracyScore: 0.60630, MultiLabelLoss: 8491173.37458, loss: 8491173.37458, batch_cost: 0.47426s, reader_cost: 0.12457, ips: 134.94716 samples/s, eta: 0:20:04
[2022/07/18 09:42:39] ppcls INFO: [Train][Epoch 1/10][Iter: 200/273]lr(CosineAnnealingDecay): 0.09865526, HammingDistance: 0.39221, AccuracyScore: 0.60775, MultiLabelLoss: 2851103.73324, loss: 2851103.73324, batch_cost: 0.47446s, reader_cost: 0.12475, ips: 134.89158 samples/s, eta: 0:20:00
[2022/07/18 09:42:44] ppcls INFO: [Train][Epoch 1/10][Iter: 210/273]lr(CosineAnnealingDecay): 0.09851949, HammingDistance: 0.39390, AccuracyScore: 0.60606, MultiLabelLoss: -2290493.99880, loss: -2290493.99880, batch_cost: 0.47456s, reader_cost: 0.12484, ips: 134.86298 samples/s, eta: 0:19:55
[2022/07/18 09:42:49] ppcls INFO: [Train][Epoch 1/10][Iter: 220/273]lr(CosineAnnealingDecay): 0.09837730, HammingDistance: 0.39434, AccuracyScore: 0.60562, MultiLabelLoss: -2186844.87674, loss: -2186844.87674, batch_cost: 0.47479s, reader_cost: 0.12499, ips: 134.79596 samples/s, eta: 0:19:51
[2022/07/18 09:42:54] ppcls INFO: [Train][Epoch 1/10][Iter: 230/273]lr(CosineAnnealingDecay): 0.09822870, HammingDistance: 0.39287, AccuracyScore: 0.60710, MultiLabelLoss: -2093130.91939, loss: -2093130.91939, batch_cost: 0.47494s, reader_cost: 0.12492, ips: 134.75454 samples/s, eta: 0:19:47
[2022/07/18 09:42:58] ppcls INFO: [Train][Epoch 1/10][Iter: 240/273]lr(CosineAnnealingDecay): 0.09807371, HammingDistance: 0.39554, AccuracyScore: 0.60443, MultiLabelLoss: -2003783.23691, loss: -2003783.23691, batch_cost: 0.47507s, reader_cost: 0.12506, ips: 134.71665 samples/s, eta: 0:19:42
[2022/07/18 09:43:03] ppcls INFO: [Train][Epoch 1/10][Iter: 250/273]lr(CosineAnnealingDecay): 0.09791236, HammingDistance: 0.39686, AccuracyScore: 0.60311, MultiLabelLoss: -1933839.57987, loss: -1933839.57987, batch_cost: 0.47519s, reader_cost: 0.12525, ips: 134.68186 samples/s, eta: 0:19:38
[2022/07/18 09:43:08] ppcls INFO: [Train][Epoch 1/10][Iter: 260/273]lr(CosineAnnealingDecay): 0.09774466, HammingDistance: 0.39622, AccuracyScore: 0.60375, MultiLabelLoss: -1859746.09497, loss: -1859746.09497, batch_cost: 0.47531s, reader_cost: 0.12542, ips: 134.64980 samples/s, eta: 0:19:34
[2022/07/18 09:43:13] ppcls INFO: [Train][Epoch 1/10][Iter: 270/273]lr(CosineAnnealingDecay): 0.09757064, HammingDistance: 0.39745, AccuracyScore: 0.60253, MultiLabelLoss: -1780679.59171, loss: -1780679.59171, batch_cost: 0.47541s, reader_cost: 0.12558, ips: 134.62017 samples/s, eta: 0:19:29
[2022/07/18 09:43:13] ppcls INFO: [Train][Epoch 1/10][Avg]HammingDistance: 0.39777, AccuracyScore: 0.60220, MultiLabelLoss: -1774132.37936, loss: -1774132.37936
[2022/07/18 09:43:15] ppcls INFO: [Eval][Epoch 1][Iter: 0/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.51136, AccuracyScore: 0.48864, batch_cost: 1.85924s, reader_cost: 1.34365, ips: 137.69075 images/sec
[2022/07/18 09:43:29] ppcls INFO: [Eval][Epoch 1][Iter: 10/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.23842, AccuracyScore: 0.76158, batch_cost: 1.34105s, reader_cost: 0.80984, ips: 190.89550 images/sec
[2022/07/18 09:43:42] ppcls INFO: [Eval][Epoch 1][Iter: 20/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.18564, AccuracyScore: 0.81436, batch_cost: 1.34072s, reader_cost: 0.80951, ips: 190.94184 images/sec
[2022/07/18 09:43:56] ppcls INFO: [Eval][Epoch 1][Iter: 30/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.16790, AccuracyScore: 0.83210, batch_cost: 1.34485s, reader_cost: 0.81545, ips: 190.35529 images/sec
[2022/07/18 09:44:09] ppcls INFO: [Eval][Epoch 1][Iter: 40/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.16036, AccuracyScore: 0.83964, batch_cost: 1.34756s, reader_cost: 0.81722, ips: 189.97333 images/sec
[2022/07/18 09:44:23] ppcls INFO: [Eval][Epoch 1][Iter: 50/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.15452, AccuracyScore: 0.84548, batch_cost: 1.34637s, reader_cost: 0.81584, ips: 190.14109 images/sec
[2022/07/18 09:44:36] ppcls INFO: [Eval][Epoch 1][Iter: 60/69]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.14978, AccuracyScore: 0.85022, batch_cost: 1.34533s, reader_cost: 0.81467, ips: 190.28854 images/sec
[2022/07/18 09:44:46] ppcls INFO: [Eval][Epoch 1][Avg]MultiLabelLoss: 0.00000, loss: 0.00000, HammingDistance: 0.14743, AccuracyScore: 0.85257
`