Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Overview

Obstacle Tower Challenge using Deep Reinforcement Learning

Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedurally generated environment, which we use as the benchmark to test the performance of our deep RL models.

Proximal Policy Optimization (PPO) and Advantage Actor Critic (A2C), both combined with Intrinsic Curiosity Model (ICM), are implemented. We train our agent using both PPO and A2C while calculating several metrics such as loss function and reward to evaluate these two methods.

More details regarding this project can be viewed in our paper.

Dependencies

Requirements: see requirements.txt. We also require python 3.5+ and pip.

Install dependencies with pip install -r requirements.txt.

Download the environment at Obstacle Tower Github page here, unzip it and place it into the root of the project.

Training an agent

Run

Run python3 -m agent.learn. This will initialize training with default parameters and it will use A2C as a learning method.

Run python3 -m agent.learn -h to check all options and their description.

Visualization

Training can be visualized with TensorboardX.
After initial collection of observation stops and training starts, a log file that recording the data during the training process will be created in the runs/ file.

Run tensorboard --logdir runs/ . This will start server on localhost:6006 by default.

For example, you can run tensorboard --logdir runs/a2c to see the visualization results of a training process using the given a2c model.

Here is a screenshot of the visualization example:

Running the agent

Run python3 -m runner --model_name This will start inference mode with selected model.

Two pretrained sample models are placed in models/ directory. To check all available options run python3 -m runner -h.
Agent runs until in-game time runs up.

For example, you can run python -m runner --model_name model_a2c_750.bin using the given sample model.

Here is a screenshot of a single run:

You might also like...
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Self-driving car env with PPO algorithm from stable baseline3
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

CVPR 2021 Challenge on Super-Resolution Space
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

AI grand challenge 2020 Repo (Speech Recognition Track)
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Code for 1st place solution in Sleep AI Challenge SNU Hospital
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

The G|oogl|e challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Owner
Zhuoyu Feng
Zhuoyu Feng
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Ilya Kostrikov 3k Dec 31, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

null 22 Dec 8, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situation.

Rosefintech 11 Aug 23, 2021
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021