PPO-Continuous-Pytorch
I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable.
And this is a clean and robust Pytorch implementation of PPO on continuous action space. Here is the result:
All the experiments are trained with same hyperparameters.
Dependencies
gym==0.18.3
box2d==2.3.10
numpy==1.21.2
pytorch==1.8.1
How to use my code
Play with trained model
run 'python main.py --write False --render True --Loadmodel True --ModelIdex 400'
Train from scratch
run 'python main.py', where the default enviroment is Pendulum-v0.
Change Enviroment
If you want to train on different enviroments, just run 'python main.py --EnvIdex 0'.
The --EnvIdex can be set to be 0~5, where
'--EnvIdex 0' for 'BipedalWalker-v3'
'--EnvIdex 1' for 'BipedalWalkerHardcore-v3'
'--EnvIdex 2' for 'LunarLanderContinuous-v2'
'--EnvIdex 3' for 'Pendulum-v0'
'--EnvIdex 4' for 'Humanoid-v2'
'--EnvIdex 5' for 'HalfCheetah-v2'
Visualize the training curve
You can use the tensorboard to visualize the training curve. History training curve is saved at '\runs'
Hyperparameter Setting
For more details of Hyperparameter Setting, please check 'main.py'