Multiview 3D object detection on MultiviewC dataset through moft3d.

Overview

Multiview Orthographic Feature Transformation for 3D Object Detection

Multiview 3D object detection on MultiviewC dataset through moft3d.

Introduction

We propose a novel method, MOFT3D, for multiview 3D object detection and MultiviewC, a synthetic dataset, for multi-view detection in occlusion scenarios.

Content

MultiviewC dataset

The MultiviewC dataset mainly contributes to multiview cattle action recognition, 3D objection detection and tracking. We build a novel synthetic dataset MultiviewC through UE4 based on real cattle video dataset which is offered by CISRO.

The MultiviewC dataset is generated on a 37.5 meter by 37.5 meter square field. It contains 7 cameras monitoring cattle activities. The images in MultiviewC are of high resolution, 1280x720 and synthetic animals in our dataset are highly realistic.

alt text

Download MultiviewC

  • download dataset and copy the annotations, images and calibrations folder into this repo.

Build your own version

Please refer to this repo for MultiviewC dataset toolkits.

MOFT3D

This repo is contributed to the code for MOFT3D.

Data Preparation

Download the MultiviewC to ~/Data folder from BaiduDrivepwd:6666 or GoogleDrive. And rename it to MultiviewC_dataset.

Training and Inference

Download the latest training documents to ~/experiments folder from BaiduDrivepwd:6666 or GoogleDrive and unzip them. This training documents contains the checkpoints of model, optimizer and scheduler and tensorboard containing the training details. Notice, this is not the final released version of MOFT3D.

Evaluation

There are two metrics to evaluate the performance of model. MODA, MODP, Precission and Recall are used to evaluate detection performance such as the detection in occlusion scenes. These metrics need to successfully run in matlab environment. Please refer to here for more details. Even though, the python implementation of these metrics mentioned above is also provided, it need to select the distance threshould to detemine to positive samples,which is not objective enough. Thus, it is recommended to select the official implementation of matlab.

When it comes to the AP, AOS, OS metrics, we need to install cuda environment and build the toolkit for 3D rotated IoUs calculation. Please refer to this repo for more details.

You might also like...
A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images. Repository to run object detection on a model trained on an autonomous driving dataset.
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Object Depth via Motion and Detection Dataset
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Using Tensorflow Object Detection API to detect Waymo open dataset
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

This is a simple framework to make object detection dataset very quickly
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Owner
Jiahao Ma
Jiahao Ma
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 4, 2020
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all views to learn a common Hamming space, thus making it difficult to handle the data with increasing views or a large number of views.

null 4 Nov 19, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

null 3 Nov 19, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

null 5 Dec 10, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

null 3 Jan 26, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022