Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Overview

Build a Discord AI Chatbot that Speaks like Your Favorite Character!

This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational model fine-tuned on the game transcript of The World Ends With You (TWEWY). Read my tutorial on freeCodeCamp or watch my video tutorial on YouTube. I've also made a JavaScript version of the tutorial using Discord.js.

I trained the model using the lines of my favorite quirky character, Joshua (left in the image below). He has about 700 lines in total in the entire game.


Here is a demo of the Discord bot in action.


You can also directly chat with the model hosted on Hugging Face's Model Hub.


Structure of this Project

  • model_train_upload_workflow.ipyb: Notebook to be run in Google Colab to train and upload the model to Hugging Face's Model Hub
  • discord_bot.py: Script to be imported into a Repl.it Python Discord.py project
  • discord_bot.js: Script to be imported into a Repl.it JavaScript Discord.js project

Resource Links

Comments
  • Trouble Uploading to HuggingFace

    Trouble Uploading to HuggingFace

    Inside the 'model_train_upload_workflow.ipynb' file

    We have the ability to upload to huggingface. However I do not have the file 'HuggingFace-API-key.txt'. Do I make the file myself? In which folder? I followed along the YT tutorial and she explains it differently than the code written. Can someone explain how they pushed it to huggingface plz.

    opened by rhollings 1
  • TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]

    TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]

    When running the main function step I am getting the above error in the title. Stack trace is below. I am attempting to run a medium model.

    Any help is appreciated!

    08/31/2021 02:34:47 - WARNING - __main__ -   Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
    /usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:902: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.
      FutureWarning,
    08/31/2021 02:35:03 - INFO - __main__ -   Training/evaluation parameters <__main__.Args object at 0x7fd830413090>
    08/31/2021 02:35:03 - INFO - __main__ -   Creating features from dataset file at cached
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-26-523c0d2a27d3> in <module>()
    ----> 1 main(trn_df, val_df)
    
    10 frames
    <ipython-input-25-aa20b6fc78bc> in main(df_trn, df_val)
         61     # Training
         62     if args.do_train:
    ---> 63         train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
         64 
         65         global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    
    <ipython-input-15-67f62bb60333> in load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate)
          2 
          3 def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
    ----> 4     return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
          5 
          6 
    
    <ipython-input-14-a654172287f5> in __init__(self, tokenizer, args, df, block_size)
         25             self.examples = []
         26             for _, row in df.iterrows():
    ---> 27                 conv = construct_conv(row, tokenizer)
         28                 self.examples.append(conv)
         29 
    
    <ipython-input-14-a654172287f5> in construct_conv(row, tokenizer, eos)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    <ipython-input-14-a654172287f5> in <listcomp>(.0)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, return_tensors, **kwargs)
       2146             stride=stride,
       2147             return_tensors=return_tensors,
    -> 2148             **kwargs,
       2149         )
       2150 
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode_plus(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
       2474             return_length=return_length,
       2475             verbose=verbose,
    -> 2476             **kwargs,
       2477         )
       2478 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _encode_plus(self, *args, **kwargs)
        171         )
        172 
    --> 173         return super()._encode_plus(*args, **kwargs)
        174 
        175     def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _encode_plus(self, text, text_pair, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
        493             return_length=return_length,
        494             verbose=verbose,
    --> 495             **kwargs,
        496         )
        497 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _batch_encode_plus(self, *args, **kwargs)
        161         )
        162 
    --> 163         return super()._batch_encode_plus(*args, **kwargs)
        164 
        165     def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _batch_encode_plus(self, batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose)
        406             batch_text_or_text_pairs,
        407             add_special_tokens=add_special_tokens,
    --> 408             is_pretokenized=is_split_into_words,
        409         )
        410 
    
    TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]
    
    opened by bhaden94 1
  • Fixed intents error for newer version of discord.py

    Fixed intents error for newer version of discord.py

    In the newer versions of discord.py if you run the current script it triggers an error in clients module. It is due to "intents" method. The error is hard to detect and catch for new programmers on discord.py library. I have fixed it and now the code runs perfectly without any errors.

    opened by sleepingcat4 0
  • Main throws

    Main throws "TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]"

    When running the main function, I get the error above.

    01/27/2022 19:54:30 - WARNING - __main__ -   Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
    /usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:807: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.
      FutureWarning,
    01/27/2022 19:54:37 - INFO - __main__ -   Training/evaluation parameters <__main__.Args object at 0x7f71d694fad0>
    01/27/2022 19:54:37 - INFO - __main__ -   Creating features from dataset file at cached
    
    ---------------------------------------------------------------------------
    
    TypeError                                 Traceback (most recent call last)
    
    <ipython-input-19-523c0d2a27d3> in <module>()
    ----> 1 main(trn_df, val_df)
    
    10 frames
    
    <ipython-input-18-aa20b6fc78bc> in main(df_trn, df_val)
         61     # Training
         62     if args.do_train:
    ---> 63         train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
         64 
         65         global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    
    <ipython-input-13-67f62bb60333> in load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate)
          2 
          3 def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
    ----> 4     return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
          5 
          6 
    
    <ipython-input-12-a654172287f5> in __init__(self, tokenizer, args, df, block_size)
         25             self.examples = []
         26             for _, row in df.iterrows():
    ---> 27                 conv = construct_conv(row, tokenizer)
         28                 self.examples.append(conv)
         29 
    
    <ipython-input-12-a654172287f5> in construct_conv(row, tokenizer, eos)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    <ipython-input-12-a654172287f5> in <listcomp>(.0)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, return_tensors, **kwargs)
       2213             stride=stride,
       2214             return_tensors=return_tensors,
    -> 2215             **kwargs,
       2216         )
       2217 
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode_plus(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
       2552             return_length=return_length,
       2553             verbose=verbose,
    -> 2554             **kwargs,
       2555         )
       2556 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _encode_plus(self, *args, **kwargs)
        172         )
        173 
    --> 174         return super()._encode_plus(*args, **kwargs)
        175 
        176     def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _encode_plus(self, text, text_pair, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
        512             return_length=return_length,
        513             verbose=verbose,
    --> 514             **kwargs,
        515         )
        516 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _batch_encode_plus(self, *args, **kwargs)
        162         )
        163 
    --> 164         return super()._batch_encode_plus(*args, **kwargs)
        165 
        166     def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _batch_encode_plus(self, batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose)
        425             batch_text_or_text_pairs,
        426             add_special_tokens=add_special_tokens,
    --> 427             is_pretokenized=is_split_into_words,
        428         )
        429 
    
    TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]
    
    opened by winterClover 0
  • Main function

    Main function "TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]"

    My Colaboratory Notebook

    I've done everything the video was showing except the first two cells in the section "Get Data from Kaggle", because I didn't use kaggle but a json file I scraped from wikiquote of Fullmetal Alchemist, I also made sure not to get any empty values.

    But, when I run the main function cell, it throws a TypeError.

    Here's the stacktrace:

    09/22/2021 23:21:33 - WARNING - __main__ -   Process rank: -1, device: cuda, n_gpu: 1, distributed training: False, 16-bits training: False
    /usr/local/lib/python3.7/dist-packages/transformers/models/auto/modeling_auto.py:592: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.
      FutureWarning,
    09/22/2021 23:21:41 - INFO - __main__ -   Training/evaluation parameters <__main__.Args object at 0x7f0379708d10>
    09/22/2021 23:21:41 - INFO - __main__ -   Creating features from dataset file at cached
    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-50-523c0d2a27d3> in <module>()
    ----> 1 main(trn_df, val_df)
    
    10 frames
    <ipython-input-49-aa20b6fc78bc> in main(df_trn, df_val)
         61     # Training
         62     if args.do_train:
    ---> 63         train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
         64 
         65         global_step, tr_loss = train(args, train_dataset, model, tokenizer)
    
    <ipython-input-40-67f62bb60333> in load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate)
          2 
          3 def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):
    ----> 4     return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)
          5 
          6 
    
    <ipython-input-39-a654172287f5> in __init__(self, tokenizer, args, df, block_size)
         25             self.examples = []
         26             for _, row in df.iterrows():
    ---> 27                 conv = construct_conv(row, tokenizer)
         28                 self.examples.append(conv)
         29 
    
    <ipython-input-39-a654172287f5> in construct_conv(row, tokenizer, eos)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    <ipython-input-39-a654172287f5> in <listcomp>(.0)
          2 def construct_conv(row, tokenizer, eos = True):
          3     flatten = lambda l: [item for sublist in l for item in sublist]
    ----> 4     conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))
          5     conv = flatten(conv)
          6     return conv
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, return_tensors, **kwargs)
       2160             stride=stride,
       2161             return_tensors=return_tensors,
    -> 2162             **kwargs,
       2163         )
       2164 
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_base.py in encode_plus(self, text, text_pair, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
       2488             return_length=return_length,
       2489             verbose=verbose,
    -> 2490             **kwargs,
       2491         )
       2492 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _encode_plus(self, *args, **kwargs)
        171         )
        172 
    --> 173         return super()._encode_plus(*args, **kwargs)
        174 
        175     def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _encode_plus(self, text, text_pair, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
        493             return_length=return_length,
        494             verbose=verbose,
    --> 495             **kwargs,
        496         )
        497 
    
    /usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/tokenization_gpt2_fast.py in _batch_encode_plus(self, *args, **kwargs)
        161         )
        162 
    --> 163         return super()._batch_encode_plus(*args, **kwargs)
        164 
        165     def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
    
    /usr/local/lib/python3.7/dist-packages/transformers/tokenization_utils_fast.py in _batch_encode_plus(self, batch_text_or_text_pairs, add_special_tokens, padding_strategy, truncation_strategy, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose)
        406             batch_text_or_text_pairs,
        407             add_special_tokens=add_special_tokens,
    --> 408             is_pretokenized=is_split_into_words,
        409         )
        410 
    
    TypeError: TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]
    
    opened by MightyCoderX 0
  • Can't run main method

    Can't run main method

    This is my main method error

    NameError                                 Traceback (most recent call last)
    <ipython-input-41-523c0d2a27d3> in <module>()
    ----> 1 main(trn_df, val_df)
    
    NameError: name 'main' is not defined
    

    and this is my method

    # Main runner
    
    def main(df_trn, df_val):
        args = Args()
        
        if args.should_continue:
            sorted_checkpoints = _sorted_checkpoints(args)
            if len(sorted_checkpoints) == 0:
                raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
            else:
                args.model_name_or_path = sorted_checkpoints[-1]
    
        if (
            os.path.exists(args.output_dir)
            and os.listdir(args.output_dir)
            and args.do_train
            and not args.overwrite_output_dir
            and not args.should_continue
        ):
            raise ValueError(
                "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                    args.output_dir
                )
            )
    
        # Setup CUDA, GPU & distributed training
        device = torch.device("cuda")
        args.n_gpu = torch.cuda.device_count()
        args.device = device
    
        # Setup logging
        logging.basicConfig(
            format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
            datefmt="%m/%d/%Y %H:%M:%S",
            level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
        )
        logger.warning(
            "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
            args.local_rank,
            device,
            args.n_gpu,
            bool(args.local_rank != -1),
            args.fp16,
        )
    
        # Set seed
        set_seed(args)
    
        config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
        model = AutoModelWithLMHead.from_pretrained(
            args.model_name_or_path,
            from_tf=False,
            config=config,
            cache_dir=args.cache_dir,
        )
        model.to(args.device)
        
        logger.info("Training/evaluation parameters %s", args)
    
        # Training
        if args.do_train:
            train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)
    
            global_step, tr_loss = train(args, train_dataset, model, tokenizer)
            logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
    
        # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
        if args.do_train:
            # Create output directory if needed
            os.makedirs(args.output_dir, exist_ok=True)
    
            logger.info("Saving model checkpoint to %s", args.output_dir)
            # Save a trained model, configuration and tokenizer using `save_pretrained()`.
            # They can then be reloaded using `from_pretrained()`
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Take care of distributed/parallel training
            model_to_save.save_pretrained(args.output_dir)
            tokenizer.save_pretrained(args.output_dir)
    
            # Good practice: save your training arguments together with the trained model
            torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    
            # Load a trained model and vocabulary that you have fine-tuned
            model = AutoModelWithLMHead.from_pretrained(args.output_dir)
            tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
            model.to(args.device)
    
        # Evaluation
        results = {}
        if args.do_eval and args.local_rank in [-1, 0]:
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(
                    os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
                logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
            logger.info("Evaluate the following checkpoints: %s", checkpoints)
            for checkpoint in checkpoints:
                global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
                prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
    
                model = AutoModelWithLMHead.from_pretrained(checkpoint)
                model.to(args.device)
                result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)
                result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
                results.update(result)
    
        return results
        ```
    opened by arnav7633 0
  • Out of memory on CUDA

    Out of memory on CUDA

    I already tried to reduce my batch to 1, and I am looking for help on how to run it better, my GPU has 6 GB of dedicated VRAM, and still is out of memory, maybe I need to reduce my sample?

    opened by Eronponce 1
  • docs: demo, experiments and live inference API on Tiyaro

    docs: demo, experiments and live inference API on Tiyaro

    Hello Maintainer of Github repo RuolinZheng08/twewy-discord-chatbot (@RuolinZheng08 )!

    Thank you for your work on RuolinZheng08/twewy-discord-chatbot. This GitHub project is interesting, and we think that it would be a great addition to make this work instantly discoverable & available as an API for all your users, to quickly try and use it in their applications.

    On Tiyaro, every model in RuolinZheng08/twewy-discord-chatbot will get its own: Dedicated model card (see https://console.tiyaro.ai/explore/r3dhummingbird-DialoGPT-medium-joshua Model demo (see https://console.tiyaro.ai/explore/r3dhummingbird-DialoGPT-medium-joshua/demo) Unique Inference API (https://api.tiyaro.ai/explore/huggingface/1//r3dhummingbird/DialoGPT-medium-joshua) Sample code snippets and swagger spec for the API

    Users will also be able to compare your model with other models of similar types on various parameters using Tiyaro Experiments (https://blog.tiyaro.ai/evaluate-openmmlabs-mmocr-models-using-tiyaro-experiments)

    —- I am from Tiyaro.ai (https://tiyaro.ai/). We are working on enabling developers to instantly evaluate, use and customize the world’s best AI. We are constantly working on adding new features to Tiyaro EasyTrain, EasyServe & Experiments, to make the best use of your ML model, and making AI more accessible for anyone.

    Sincerely, I-Jong Lin

    opened by ijonglin 0
  • In Hugging Face when I try to send a message to it it says unknown error then spams hey a bunch of times and in replit it gives this error

    In Hugging Face when I try to send a message to it it says unknown error then spams hey a bunch of times and in replit it gives this error

    Traceback (most recent call last): File "main.py", line 82, in main() File "main.py", line 78, in main client = MyClient('DialoGPT-small-RickAndMorty2') File "main.py", line 17, in init super().init() TypeError: init() missing 1 required keyword-only argument: 'intents'

    opened by YoXpertguyZ 1
  • Why inputs and labels are same while training?

    Why inputs and labels are same while training?

    for step, batch in enumerate(epoch_iterator):
    
                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue
    
                inputs, labels = (batch, batch)
                if inputs.shape[1] > 1024: continue
                inputs = inputs.to(args.device)
                labels = labels.to(args.device)
                model.train()
                outputs = model(inputs, labels=labels)
    
    opened by vaishalishrivastava 1
  • Error reading data from kaggle

    Error reading data from kaggle

    Hello, I did everything as shown in the video, but I get an error when I want to access the "transcript.csv" file https://gyazo.com/c59a07d69a758e2d9abe2820113eae0d

    https://www.kaggle.com/renjagrotemeyer/prototech-chat-transcipt

    opened by renja-grotemeyer 0
Owner
Lynn Zheng
SWE @ Salesforce | Hobbyist Game Dev @ freeCodeCamp | CS BS/MS + Statistics BA @ UChicago
Lynn Zheng
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements ?? Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 8, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. ?? Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

null 5 Mar 7, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

null 1 Oct 30, 2021
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

null 6 Nov 20, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ ?? Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

null 2 Jan 20, 2022
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 4, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022