This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Overview

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021)

Introduction

This repository is the offical Pytorch implementation of ContextPose, Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021). Below is the example pipeline of using ContextPose for 3D pose estimation. overall pipeline

Quick start

Environment

This project is developed using >= python 3.5 on Ubuntu 16.04. NVIDIA GPUs are needed.

Installation

  1. Clone this repo, and we'll call the directory that you cloned as ${ContextPose_ROOT}.
  2. Install dependences.
    1. Install pytorch >= v1.4.0 following official instruction.
    2. Install other packages. This project doesn't have any special or difficult-to-install dependencies. All installation can be down with:
    pip install -r requirements.txt
  3. Download data following the next section. In summary, your directory tree should be like this
${ContextPose_ROOT}
├── data
├── experiments
├── mvn
├── logs 
├── README.md
├── process_h36m.sh
├── requirements.txt
├── train.py
`── train.sh

Data

Note: We provide the training and evaluation code on Human3.6M dataset. We do NOT provide the source data. We do NOT own the data or have permission to redistribute the data. Please download according to the official instructions.

Human3.6M

  1. Install CDF C Library by following (https://stackoverflow.com/questions/37232008/how-read-common-data-format-cdf-in-python/58167429#58167429), which is neccessary for processing Human3.6M data.
  2. Download and preprocess the dataset by following the instructions in mvn/datasets/human36m_preprocessing/README.md.
  3. To train ContextPose model, you need rough estimations of the pelvis' 3D positions both for train and val splits. In the paper we use the precalculated 3D skeletons estimated by the Algebraic model proposed in learnable-triangulation (which is an opensource repo and we adopt their Volumetric model to be our baseline.) All pretrained weights and precalculated 3D skeletons can be downloaded at once from here and placed to ./data/pretrained. Here, we fine-tuned the pretrained weight on the Human3.6M dataset for another 20 epochs, please download the weight from here and place to ./data/pretrained/human36m.
  4. We provide the limb length mean and standard on the Human3.6M training set, please download from here and place to ./data/human36m/extra.
  5. Finally, your data directory should be like this (for more detailed directory tree, please refer to README.md)
${ContextPose_ROOT}
|-- data
    |-- human36m
    |   |-- extra
    |   |   | -- una-dinosauria-data
    |   |   | -- ...
    |   |   | -- mean_and_std_limb_length.h5
    |   `-- ...
    `-- pretrained
        |-- human36m
            |-- human36m_alg_10-04-2019
            |-- human36m_vol_softmax_10-08-2019
            `-- backbone_weights.pth

Train

Every experiment is defined by .config files. Configs with experiments from the paper can be found in the ./experiments directory. You can use the train.sh script or specifically:

Single-GPU

To train a Volumetric model with softmax aggregation using 1 GPU, run:

python train.py \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

The training will start with the config file specified by --config, and logs (including tensorboard files) will be stored in --logdir.

Multi-GPU

Multi-GPU training is implemented with PyTorch's DistributedDataParallel. It can be used both for single-machine and multi-machine (cluster) training. To run the processes use the PyTorch launch utility.

To train our model using 4 GPUs on single machine, run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 --sync_bn\
  train.py  \
  --config experiments/human36m/train/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Evaluation

After training, you can evaluate the model. Inside the same config file, add path to the learned weights (they are dumped to logs dir during training):

model:
    init_weights: true
    checkpoint: {PATH_TO_WEIGHTS}

Single-GPU

Run:

python train.py \
  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Multi-GPU

Using 4 GPUs on single machine, Run:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=2345 \
  train.py  --eval --eval_dataset val \
  --config experiments/human36m/eval/human36m_vol_softmax_single.yaml \
  --logdir ./logs

Argument --eval_dataset can be val or train. Results can be seen in logs directory or in the tensorboard.

Results & Model Zoo

  • We evaluate ContextPose on two available large benchmarks: Human3.6M and MPI-INF-3DHP.
  • To get the results reported in our paper, you can download the weights and place to ./logs.
Dataset to be evaluated Weights Results
Human3.6M link 43.4mm (MPJPE)
MPI-INF-3DHP link 81.5 (PCK), 43.6 (AUC)
  • For H36M, the main metric is MPJPE (Mean Per Joint Position Error) which is L2 distance averaged over all joints. To get the result, run as stated above.
  • For 3DHP, Percentage of Correctly estimated Keypoints (PCK) as well as Area Under the Curve (AUC) are reported. Note that we directly apply our model trained on H36M dataset to 3DHP dataset without re-training to evaluate the generalization performance. To prevent from over-fitting to the H36M-style appearance, we only change the training strategy that we fix the backbone to train 20 epoch before we train the whole network end-to-end. If you want to eval on MPI-INF-3DHP, you can save the results and use the official evaluation code in Matlab.

Human3.6M

MPI-INF-3DHP

Citation

If you use our code or models in your research, please cite with:

@article{ma2021context,
  title={Context Modeling in 3D Human Pose Estimation: A Unified Perspective},
  author={Ma, Xiaoxuan and Su, Jiajun and Wang, Chunyu and Ci, Hai and Wang, Yizhou},
  journal={arXiv preprint arXiv:2103.15507},
  year={2021}
} 

Acknowledgement

This repo is built on https://github.com/karfly/learnable-triangulation-pytorch. Part of the data are provided by https://github.com/una-dinosauria/3d-pose-baseline.

You might also like...
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

PyTorch implementation for 3D human pose estimation
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Code for
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

Code for ICCV 2021 paper
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Comments
  • Reproducing reported performance

    Reproducing reported performance

    Hi @ShirleyMaxx ,

    Thanks a lot for the great work and releasing this codebase!

    I'm trying to reproduce the reported performance of 43.4mm in H36M. After following the instruction of preparing data and pretrained models, I'm simply using 1 GPU to train with the config file of human36m_vol_softmax_single.yaml. Instead of running for 9999 epochs, I trained for 30 epochs as indicated in the paper. However the best result I got is MPJE=55.0mm (The per_pose_error.Average.Average metric in metrics.json).

    Would you mind clarifying if I'm doing something wrong? How should I modify the config file to reproduce the best performance?

    opened by JingweiJ 1
  • Inference example

    Inference example

    Hello, could you please provide an inference example for any .mp4 video file? It not clear from your code how to do that - it seems that it only can evaluate Human3.6M dataset...

    opened by DaniyarM 1
Owner
null
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

 同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 4, 2023
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 5, 2023
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 6, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 6, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022