A multi-scale unsupervised learning for deformable image registration
Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zhang – IJCARS 2021
✏️
📄
Citation
If you find our work useful or interesting, please cite our paper:
@article{shao2021multi,
title={A multi-scale unsupervised learning for deformable image registration},
author={Shao, Shuwei and Pei, Zhongcai and Chen, Weihai and Zhu, Wentao and Wu, Xingming and Zhang, Baochang},
journal={International Journal of Computer Assisted Radiology and Surgery},
pages={1--10},
year={2021},
publisher={Springer}
}
📈
Results
To train a model, run:
CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python train_s2s_2d.py \
<your_data_path> \
--model vm2 \
--batch_size 2 \
--lambda 0.1 \
--data_loss mse \
--epochs 1500 \
--steps_per_epoch 100 \
--model_dir <your_dir_to_save_model>
Acknowledgement
Our code is based on the implementation of VoxelMorph.