Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Related tags

Deep Learning STFC3
Overview

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue Cao, Zheng Zhang, Philip H. S. Torr, Han Hu (* equal contribution)

arxiv

Introduction

This is the the repository for Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning, published in SRVU - ICCV 2021 workshop.

If you find our work useful in your research, please consider citing us.

@article{tang2021breaking,
  title={Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning},
  author={Tang, Yansong and Jiang, Zhenyu and Xie, Zhenda and Cao, Yue and Zhang, Zheng and Torr, Philip HS and Hu, Han},
  journal={arXiv preprint arXiv:2105.05838},
  year={2021}
}

Installation

  1. Create a conda environment with Python 3.8.

  2. Install Pytorch 1.5 with CUDA 10.2.

  3. Install packages list in requirements.txt.

  4. Install NVIDIA Apex following the instruction here.

Data

We use the Kinetics400 dataset. You can find directions for downloading it here.

To facilitates data preparation, we save the precomputed metadata given by torchvision.datasets.Kinetics400, and load it before training.

Training and Testing

Training

Run:

python -m torch.distributed.launch --nproc_per_node=$NUM_GPUS train.py -opt $OPTION_FILE_NAME -extra amp_opt_level=O1

An example option file is here

Testing

You could download our pretrained model here

We follow the CRW to perform downstream task evaluation

An example command is:

bash davis_test_script.sh $TRAINED_MODEL_PATH reproduce 0 -1

Related Repositories

  1. CRW
You might also like...
End-to-End Object Detection with Fully Convolutional Network
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma.
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

Another pytorch implementation of FCN (Fully Convolutional Networks)
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Another pytorch implementation of FCN (Fully Convolutional Networks)
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Owner
Zhenyu Jiang
Second-year Ph.D. at UTCS
Zhenyu Jiang
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.

Yang Wenhan 44 Dec 6, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch>=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 1, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 7, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

null 57 Dec 28, 2022