This is the repository for The Machine Learning Workshops, published by AI DOJO

Overview

The AI DOJO Machine Learning Workshops

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshops code with supporting project files necessary to work through the code.

Requirements and Setup

We recommend to use Colab, you will fond Colab icon in the top of all AI DOJO code. If you are want to use your own pc place follow the instructions below:

  1. Install Python on Windows/Mac.
  2. Install pip for Windows/Mac/Linux.
  3. Make sure to install the necessary python packages for the workshop from the requirements.txt file.
  4. Donwload the code editer we are recommend vscode

About The AI DOJO Machine Learning Workshop

With expert guidance and real-world examples the AI DOJO Machine Learning Workshop will walk you through the process of building, training, and model evaluation of your machine learning and Deep Learning algorithms. By showing you how to leverage TensorFlow flexibility, The AI DOJO Machine Learning Workshop will teach you all the skills you need to use machine learning & Deep Learning in the right way.

What You Will Learn

  • Understand how to select an algorithm that best fits your dataset and desired outcome.
  • Explore popular real-world algorithms such as Linear Regression, Logistic Regression, Decision Trees, Random Forest, Neural Networks, Convolutional Neural Networks (CNNs) and etc...
  • Understand the importance of data pipeline and how to use it to speed up the training process.
  • Understand the importance of hyperparameters and tuning them to get the best results.
  • Understand the importance of data augmentation and how to use it to prevent overfitting.
  • Understand the importance of regularization and how to use it to prevent overfitting.
  • Discover different approaches to solve machine learning classification problems.
  • Discover different approaches to solve machine learning regression problems.
  • Develop Deep Learning structures using the TensorFlow package.
  • Perform error analysis to improve your model's performance.
  • Understand the importance of data preprocessing and how to use it to improve your model's performance.
You might also like...
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

My published benchmark for a Kaggle Simulations Competition
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Owner
AI Dojo
AI Dojo
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
null 190 Jan 3, 2023
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 9, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 6, 2023
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

null 88 Nov 22, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022