Tiny Kinetics-400 for test

Overview

Kinetics-400迷你数据集

English | 简体中文

该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。

数据集介绍

Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含400个类别,全部文件大概需要135G左右的存储空间,下载起来比较困难。

Tiny-Kinetics-400同样包含400个类别,每个类别下仅有两条视频数据,分为train与val,可用于调试一些视频理解模型。

具体对比如下:

数据集 训练条数 验证条数 大小
Kinetics-400 234619 19761 135G
Tiny-Kinetics-400 400 400 420M

Tiny-Kinetics-400下载

目前提供了百度网盘的下载方式:

下载方式 链接
百度云 BaiduCloud (1cns)

抽帧Extract Frames

通常在训练视频理解模型时,会提前对视频文件进行抽帧,以此来加速训练过程。这里提供了抽帧脚本,且满足以下条件:

  • 每个视频只抽取300帧
  • 如果整个视频多于300帧,直接舍弃之后的视频帧
  • 如果整个视频少于300帧,复制最后的视频帧以填充至300帧

使用方式:

python ./tools/extract_frames.py --source_dir ~/data/tiny-kinetics-400/train_256 ~/data/kinetics400_30fps_frames/train
python ./tools/extract_frames.py --source_dir ~/data/tiny-kinetics-400/val_256 ~/data/kinetics400_30fps_frames/val

将meta文件移到视频帧目录下:

mv ./annotations/tiny_train.csv ~/data/kinetics400_30fps_frames/
mv ./annotations/tiny_val.csv ~/data/kinetics400_30fps_frames/

最终的目录结构如下:

kinetics400_30fps_frames/
├── train/
│   ├── abseiling/
│   │   ├──_4YTwq0-73Y_000044_000054
│   │   │  ├──frame_00001.jpg
│   │   │  ├──...
│   │   ├──...
│   ├──...
├── val/
│   ├── abseiling/
│   │   ├──-3B32lodo2M_000059_000069
│   │   │  ├──frame_00001.jpg
│   │   │  ├──...
│   │   ├──...
│   ├──...
├── tiny_train.csv
├── tiny_val.csv

TODO

  • 更多下载方式

参考

You might also like...
Object detection using yolo-tiny model and opencv used as backend
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

Multiple custom object count and detection using YOLOv3-Tiny method
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

A tiny, pedagogical neural network library with a pytorch-like API.
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Comments
  • 问题

    问题

    感谢分享,你好,从GoogleDrive里边下载的tiny数据集中每个类别有三个视频,而文章中提到只有两个是为什么呀。 还有一点比较疑惑下载好的数据集tiny-kinetics-400底下没有train_256和val_256和文件夹,执行程序时发生报错。下图是我下载数据集的结构。麻烦博主解惑一下 Kazam_screenshot_00004

    opened by Storyteler 5
Owner
Data&Model&Loss
null
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

null 35 Nov 16, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 4, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 8, 2023
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022